【题目】如图,⊙O是△ABC的外接圆,过点A作⊙O的切线交BC的延长线于点D.
(1)求证:∠CAD=∠B.
(2)若AC是∠BAD的平分线,sinB=,BC=2.求⊙O的半径.
【答案】(1)见解析;(2)⊙O的半径为.
【解析】
(1)连结AO,并延长AO交⊙O与点E,连结EC,依据圆周角定理可得到∠B=∠E,然后根据直径所对的圆周角为90°,得出∠E+∠EAC=90°,再根据切线的性质可得∠EAC+∠CAD=90°,进行证明即可;
(2)根据AC是∠BAD的平分线,结合(1)中结论证出BC=AC,然后由∠B=∠E可得到sinE=,从而可求得AE的长,然后可求得⊙O的半径.
解:(1)连结AO,并延长AO交⊙O与点E,连结EC.
∵AD为⊙O的切线,
∴OA⊥AD,
∴∠EAD=90°,
∴∠EAC+∠CAD=90°.
∵AE为⊙O的直径,
∴∠E+∠EAC=90°,
∴∠E=∠CAD.
又∵∠E=∠B,
∴∠CAD=∠B.
(2)∵AC是∠BAD的平分线,
∴∠BAC=∠CAD.
又∵∠CAD=∠B,
∴∠BAC=∠CAB.
∴AC=BC=2.
又∵∠E=∠B,
∴∠CAD=∠B.
∴sinE=sinB=,
在RtAEC中,sinE=,
即=,解得AE=,
∴⊙O的半径为.
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,E是边BC上的点,将线段DE绕点E逆时针旋转90°得到EF,过点C作CG∥EF交BA(或其延长线)于点G,连接DF,FG.
(1)FG与CE的数量关系是 ,位置关系是 .
(2)如图2,若点E是CB延长线上的点,其它条件不变.
①(1)中的结论是否仍然成立?请作出判断,并给予证明;
②DE,DF分别交BG于点M,N,若BC=2BE,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小华在体育馆的看台P处进行观测,测得另一看台观众A处的俯角为15°,观众B处的俯角为60°,已知观众A、B所在看台的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上,点H、B、C在同一条直线上,且PH⊥HC,PH=15米.
(1)AB所在看台坡角∠ABC=____度;
(2)求A、B两点间的距离.(结果精确到0.1米,参考数据:≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0;⑦方程ax2+bx+c=﹣4有实数解,正确的有( )
A. 3个 B. 4个 C. 5个 D. 6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB在平面直角坐标系中,已知:B(0,),点A在x轴的正半轴上,OA=3,∠BAD=30°,将△AOB沿AB翻折,点O到点C的位置,连接CB并延长交x轴于点D.
(1)求点D的坐标;
(2)动点P从点D出发,以每秒2个单位的速度沿x轴的正方向运动,当△PAB为直角三角形时,求t的值;
(3)在(2)的条件下,当△PAB为以∠PBA为直角的直角三角形时,在y轴上是否存在一点Q使△PBQ为等腰三角形?如果存在,请直接写出Q点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD,将边CD绕点C顺时针旋转60°,得到线段CE,连接DE,AE,BD交于点F.
(1)求∠AFB的度数;
(2)求证:BF=EF;
(3)连接CF,直接用等式表示线段AB,CF,EF的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com