精英家教网 > 初中数学 > 题目详情

【题目】如图,小华在体育馆的看台P处进行观测,测得另一看台观众A处的俯角为15°,观众B处的俯角为60°,已知观众AB所在看台的坡度i(tanABC)1,点PHBCA在同一个平面上,点HBC在同一条直线上,且PHHCPH15米.

(1)AB所在看台坡角∠ABC____度;

(2)AB两点间的距离.(结果精确到0.1米,参考数据:≈1.73)

【答案】(1)30(2)AB≈17.3m.

【解析】

1)作的延长线于,根据坡度的定义求出的值即可求得答案.

2)证明,求出即可求得答案.

解:(1)作的延长线于,如下图所示,

由题意:

故答案为

(2)由题意

中,∵

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】关于的一元二次方程有两个不相等的实数根

(1)求实数的取值范围;

(2)若方程的两实根,满足,求的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB8厘米,BC10厘米,点E在边AB上,且AE2厘米,如果动点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,动点Q在线段CD上由C点向D点运动,设运动时间为t秒,当△BPE与△CQP全等时,t的值为( )

A. 2B. 1.52C. 2.5D. 22.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,如图1ABO的弦,点F的中点,过点FEFAB于点E,易得点EAB的中点,即AEEBO上一点CACBC),则折线ACB称为O的一条“折弦”.

1)当点C在弦AB的上方时(如图2),过点FEFAC于点E,求证:点E是“折弦ACB”的中点,即AEEC+CB

2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AEECCB满足怎样的数量关系?直接写出,不必证明.

3)如图4,已知RtABC中,∠C90°,∠BAC30°,RtABC的外接圆O的半径为2,过O上一点PPHAC于点H,交AB于点M,当∠PAB45°时,求AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,过点A作⊙O的切线交BC的延长线于点D

1)求证:∠CAD=∠B

2)若AC是∠BAD的平分线,sinBBC2.求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正五边形ABCDE内接于⊙OF的中点,直线AP与⊙O相切于点A,则∠FAP的度数是(  )

A. 36°B. 54°C. 60°D. 72°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx+c的图象经过点A(3,0)、点B(0,3),顶点为M.

(1)求该二次函数的解析式;

(2)求∠OBM的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师将个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.

摸球的次数

摸到黑球的次数

摸到黑球的频率

补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________(精确到0.01);

估算袋中白球的个数;

的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有2个黄球,1个红球和1个白球,除色外都相同.

(1)搅匀后,从袋中随机出一个球,恰好是黄球的概是_____

(2)搅匀后,从中随机摸出两个球,求摸到一个红球和一个黄球的概率.

查看答案和解析>>

同步练习册答案