精英家教网 > 初中数学 > 题目详情
16.如图,△ABC中,CD是边AB上的高,且$\frac{AD}{CD}$=$\frac{CD}{BD}$.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.

分析 (1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;
(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.

解答 (1)证明:∵CD是边AB上的高,
∴∠ADC=∠CDB=90°,
∵$\frac{AD}{CD}$=$\frac{CD}{BD}$.
∴△ACD∽△CBD;
(2)解:∵△ACD∽△CBD,
∴∠A=∠BCD,
在△ACD中,∠ADC=90°,
∴∠A+∠ACD=90°,
∴∠BCD+∠ACD=90°,
即∠ACB=90°.

点评 此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.已知一元二次方程x2-2mx+m2+m-1=0,其中m为常数,当m变化时,设抛物线的顶点为M,点N的坐标为(3,0),请求出线段MN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.

(1)参加比赛的学生人数共有20名,在扇形统计图中,表示“D等级”的扇形的圆心角为72度,图中m的值为40;
(2)补全条形统计图;
(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛,已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.将图中所示的图案以圆心为中心,旋转180°后得到的图案是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为(  )
A.40°B.50°C.60°D.20°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是(  )
A.$\frac{5}{8}$B.$\frac{1}{5}$C.$\frac{3}{8}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是(  )
A.a>bB.a=bC.a<bD.不能判断

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:(x+y)(x-y)-x(x+y)+2xy,其中x=(3-π)0,y=2.

查看答案和解析>>

同步练习册答案