【题目】某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:
小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图1,Rt△AOB的直角顶点O在坐标原点,点A在y轴正半轴上,点B在x轴正半轴上,OA=4,OB=2.将线段AB绕点B顺时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,抛物线y=ax2+3x+c经过点C,与y轴交于点E(0,2),直线AC与x轴交于点H.
(1)求点C的坐标及抛物线的表达式;
(2)如图2,已知点G是线段AH上的一个动点,过点G作AH的垂线交抛物线于点F(点F在第一象限).设点G的横坐标为m.
①点G的纵坐标用含m的代数式表示为 ;
②如图3,当直线FG经过点B时,求点F的坐标,判断四边形ABCF的形状并证明结论;
③在②的前提下,连接FH,点N是坐标平面内的点,若以F,H,N为顶点的三角形与△FHC全等,请直接写出点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】运算能力是一项重要的数学能力.王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试.下面的气泡图中,描述了其中5位同学的测试成绩.(气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低;气泡越大平均分越高.)
①在5位同学中,有_____位同学第一次成绩比第二次成绩高;
②在甲、乙两位同学中,第三次成绩高的是_____.(填“甲”或“乙”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
(1)求证:∠CBE=∠F;
(2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.
(1)抛物线的对称轴为x=_____(用含m的代数式表示);
(2)若AB∥x轴,求抛物线的表达式;
(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(xp,yp),yp≤2,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C作CE⊥AC,交BD的延长线于点E,交AD的延长线于点F,且满足∠DCE=∠ACB.
(1)求证:四边形ABCD是矩形;
(2)求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):
1 1 2 3 2 3 2 3 3 4 3 3 4 3 3
5 3 4 3 4 4 5 4 5 3 4 3 4 5 6
(1)对以上数据进行整理、描述和
①绘制如下的统计图,请补充完整;
②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;
(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,老师提出如下问题:已知点A,B,C是不在同一直线上三点,求作一条过点C的直线l,使得点A,B到直线l的距离相等.
小明的作法如下:
①连接AB;
②分别以A,B为圆心,以大于AB为半径画弧,两弧交于M、N两点;
③作直线MN,交线段AB于点O;
④作直线CO,则CO就是所求作的直线l.
老师肯定了小明的作法,根据上面的作法回答下列问题:
(1)小明利用尺规作图作出的直线MN是线段AB的 ;点O是线段AB的 ;
(2)要证明点A,点B到直线l的距离相等,需要在图中画出必要的线段,请在图中作出辅助线,并说明线段 的长是点A到直线l的距离,线段 的长是点B到直线l的距离;
(3)证明点A,B到直线l的距离相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.
(1)求证:四边形CDBE为矩形;
(2)若AC=2,,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com