精英家教网 > 初中数学 > 题目详情

【题目】综合与探究:

如图1RtAOB的直角顶点O在坐标原点,点Ay轴正半轴上,点Bx轴正半轴上,OA4OB2.将线段AB绕点B顺时针旋转90°得到线段BC,过点CCDx轴于点D,抛物线yax2+3x+c经过点C,与y轴交于点E(02),直线ACx轴交于点H

(1)求点C的坐标及抛物线的表达式;

(2)如图2,已知点G是线段AH上的一个动点,过点GAH的垂线交抛物线于点F(F在第一象限).设点G的横坐标为m

G的纵坐标用含m的代数式表示为   

如图3,当直线FG经过点B时,求点F的坐标,判断四边形ABCF的形状并证明结论;

的前提下,连接FH,点N是坐标平面内的点,若以FHN为顶点的三角形与△FHC全等,请直接写出点N的坐标.

【答案】(1)C(62);抛物线解析式为y=﹣x2+3x+2(2)①﹣m+4;②四边形ABCF是正方形,理由见解析;③点N坐标为()()(104)

【解析】

1)由线段AB旋转90°得BCCDx轴可证得△BDC≌△AOB,故有BD=OA=4CD=OB=2,求得点C坐标,进而由点EC坐标用待定系数法即可求抛物线解析式.

2)①由点AC坐标用待定系数法求直线AC解析式,把点G横坐标m代入即得到用m表示点G纵坐标.

②由AB=BCBGAC可得AG=CG,即点GAC中点,根据中点坐标公式可求点G坐标,进而求直线BG解析式.联立直线BG与抛物线解析式解方程组即求得点F坐标.过点FPFy轴于点P,延长DCPF于点Q,根据勾股定理求得AB=BC=CF=AF=2,判断四边形ABCF是菱形.再由∠ABC=90°即证得菱形ABCF为正方形.

③由直线AC解析式求其与x轴交点H的坐标,用两点间距离公式求CFCH的长.设点N坐标为(st),用st的式子表示FN2NH2.分类讨论:若△FHC≌△FHN,则FN=FCNH=CH,列得关于st的方程组,求解即得到点N坐标;若△FHC≌△HFN,则FN=CHNH=FC,同理可求得点N坐标.

解:(1)∵OA4OB2

∴A(04)B(20)

线段AB绕点B顺时针旋转90°得到线段BC

∴ABBC∠ABC90°

∴∠ABO+∠DBC∠ABO+∠OAB90°

∴∠DBC∠OAB

∵CD⊥x轴于点D

∴∠BDC∠AOB90°

△BDC△AOB中,

∴△BDC≌△AOB(AAS)

∴BDOA4CDOB2

∴ODOB+BD6

∴C(62)

抛物线yax2+3x+c经过点C、点E(02)

解得:

抛物线解析式为y=﹣x2+3x+2.

(2)①∵A(04)

设直线AC解析式为ykx+4

把点C代入得:6k+42,解得:k=﹣

直线ACy=﹣x+4

G在直线AC上,横坐标为m

∴yG=﹣m+4

故答案为:﹣m+4

②∵ABBCBG⊥AC

∴AGCG,即GAC中点,

∴G(33)

设直线BG解析式为ygx+b

,解得:

直线BGy3x6

直线BG与抛物线交点为F,且点F在第一象限,

解得: (舍去)

∴F(46)

判断四边形ABCF是正方形,理由如下:

如图1,过点FFP⊥y轴于点PPF延长线与DC延长线交于点Q

∴PF4OPDQ6PQOD6

∴APOPOA642FQPQPF642CQDQCD624

∴AFFC

∵BCAB

∴ABBCCFAF

四边形ABCF是菱形,

∵∠ABC90°

菱形ABCF是正方形.

③∵直线ACy=﹣x+4x轴交于点H

x+40,解得:x12

∴H(120)

∴FC2(64)2+(26)220CH2(126)2+(02)240

设点N坐标为(st)

∴FN2(s4)2+(t6)2NH2(s12)2+(t0)2

如图2,若△FHC≌△FHN,则FNFCNHCH

解得:(即点C)

∴N

如图34,若△FHC≌△HFN,则FNCHNHFC

,解得:

∴N

综上所述,以FHN为顶点的三角形与△FHC全等时,点N坐标为()

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形纸片分别是边的中点,把边向上翻折,使点恰好落在上的点处,为折痕,且于点,则的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,点为坐标原点,抛物线轴交于的左侧),与轴交于点,过点轴,交抛物线于点,且.

1)如图1,求抛物线的解析式;

2)如图2,点为第二象限抛物线上一点,轴于点,点为抛物线的顶点,连接,设点的横坐标为的面积为,求的函数关系式;

3)如图3,在(2)的条件下,把沿直线翻折使点落在点处,与直线交于点,连接交线段于点,点在线段上(下),且,若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点ABC,已知A(﹣10),C03).

1)求抛物线的表达式;

2)如图1P为线段BC上一点,过点Py轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;

3)如图2,抛物线顶点为EEFx轴于F点,N是线段EF上一动点,Mm0)是x轴上一动点,若∠MNC90°,直接写出实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】伊利集团是中国规模最大、产品线最全的乳制品企业.综合实践小组的同学从网上搜集到如下一些伊利集团近几年的营业状况的资料,其中图120132018年伊利集团营业收入及净利润情况统计图,图22018年伊利集团各品类业务营收比例情况统计图(数据来源:公司财报、中商产业研究院)

(1)解读信息:

综合实践小组的同学结合统计图提出了如下问题,请你解答:

①2018年,伊利集团营收及净利再次刷新行业纪录,稳居亚洲乳业第一.这一年,伊利集团实现营业收人   亿元,净利润   亿元;

2018年伊利集团“奶粉及奶制品“业务的营业收入(结果保留整数)

201320186年中;伊利集团净利润比上一年增长额最多的是   年;估计2019年伊利集团的净利润将比上一年增长   亿元,理由是   

(2)拓展活动:

如图,同学们收集了伊利集团旗下“优酸乳、谷粒多、QQ星,安幕希”四种产品的商标图片(四张图片除商标图案外完全相同,分别记为ABCD)(见图3).同学们用这四张卡片设计了一个游戏,规则是:将四张图片背面朝上放在桌上,搅匀后,由甲从中随机抽取一张,记下商标名称后放回;再次搅匀后,由乙从中随机抽取一张.若两人抽到的商标相同则甲获胜;否则,乙获胜,这个规则对甲乙双方公平吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为.

1)求二次函数的表达式和直线的表达式;

2)点是直线上的一个动点,过点轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;

3)在抛物线上存在异于的点,使边上的高为,请直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列8×8的网格中,横、纵坐标均为整点的数叫做格点,△ABC的顶点的坐标分别为A30)、B04)、C42).

1)直接写出△ABC的形状;

2)要求在下图中仅用无刻度的直尺作图:将△ABC绕点B逆时针旋转角度到△A1BC1,其中α=∠ABCAC的对应点分别为A1C1,请你完成作图;

3)在网格中找一个格点G,使得C1GAB,并直接写出G点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△BAC为圆O内接三角形,ABACD⊙O上一点,连接CDBDBDAC交于点E,且BC2ACCE

求证:∠CDB=∠CBD

若∠D30°,且⊙O的半径为3+I为△BCD内心,求OI的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:

小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.

查看答案和解析>>

同步练习册答案