精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠BAC=90°AB=6AC=8P为边BC上一动点,PE⊥ABEPF⊥ACFMEF中点,则AM的最小值是

【答案】.

【解析】试题分析:根据矩形的性质就可以得出EFAP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.

∵PE⊥ABPF⊥AC∠BAC=90°∴∠EAF=∠AEP=∠AFP=90°四边形AEPF是矩形,

∴EFAP互相平分.且EF=AP∴EFAP的交点就是M点, AP的值最小时,AM的值就最小,

AP⊥BC时,AP的值最小,即AM的值最小. AP×BC=AB×AC∴AP×BC=AB×AC

Rt△ABC中,由勾股定理,得BC==10∵AB=6AC=8∴10AP=6×8∴AP=

∴AM=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】幸福是奋斗出来的,在数轴上,若CA的距离刚好是3,则C点叫做A幸福点,若CA、B的距离之和为6,则C叫做A、B幸福中心

(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是   

(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是   (填一个即可);

(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是AB的幸福中心?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数关系的图像.

(1)他们出发半小时后,离家多少千米?

(2)求出AB段的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果方程x2+px+q=0的两个根是x1x2,那么x1+x2=-px1x2=q,请根据以上结论,解决下列问题:

(1)已知x1x2是方程x2+4x-2=0的两个实数根,求+的值;

(2)已知方程x2+bx+c=0的两根分别为+1、-1,求出bc的值;

(3)关于x的方程x2+(m-1)x+m2-3=0的两个实数根互为倒数,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是_____(填写符合要求的序号)

(1)两个有理数的和为负数时,这两个数都是负数;

(2)如果两个数的差是正数,那么这两个数都是正数;

(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;

(4)数轴上到原点的距离为3的点表示的数是3或﹣3;

(5)0乘以任何数都是0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:
A(﹣1,0)的距离跨度
B( ,﹣ )的距离跨度
C(﹣3,2)的距离跨度
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是

(2)如图2,在平面直角坐标系xOy中,图形G2为以C(1,0)为圆心,2为半径的圆,直线y=k(x+1)上存在到G2的距离跨度为2的点,求k的取值范围.

(3)如图3,在平面直角坐标系xOy中,射线OA:y= x(x≥0),圆C是以3为半径的圆,且圆心C在x轴上运动,若射线OA上存在点到圆C的距离跨度为2,直接写出圆心C的横坐标xc的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面内已知分别是的平分线,则的度数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分别为E,F.

(1)求证:ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.证明:

(1)BD=DC;
(2)DE是⊙O切线.

查看答案和解析>>

同步练习册答案