【题目】如图,点B是⊙O上一点,弦CD⊥OB于点E,过点C的切线交OB的延长线于点F,连接DF,
(1)求证:DF是⊙O的切线;
(2)若⊙O的半径为2,∠CFD=60°,求CD的长.
【答案】(1)详见解析;(2)2.
【解析】
(1)连接OD,如图,利用切线的性质得∠OCD+∠DCF=90°,再利用垂径定理得到OF为CD的垂直平分线,则CF=DF,所以∠CDF=∠DCF,加上∠CDO=∠OCD,则∠CDO+∠CDB=90°,然后根据切线的判定定理得到结论;
(2)根据切线的性质得到∠CFO=30°,求得∠COF=60°,根据直角三角形的性质和垂径定理即可得到结论.
(1)证明:连接OD,如图,
∵CF是⊙O的切线
∴∠OCF=90°,
∴∠OCD+∠DCF=90°
∵直径AB⊥弦CD,
∴CE=ED,即OF为CD的垂直平分线
∴CF=DF,
∴∠CDF=∠DCF,
∵OC=OD,
∴∠CDO=∠OCD
∴∠CDO+∠CDB=∠OCD+∠DCF=90°,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)解:∵FC,FD是⊙O的切线,∠CFD=60°,
∴∠CFO=30°,
∴∠COF=60°,
∵CD⊥OB,
∴∠OCE=30°,
∵OC=2,
∴CE=OC=,
∴CD=2CE=2.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.
(1)求抛物线的解析式;
(2)当何值时,的面积最大?并求最大值的立方根;
(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家、食堂,图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y(km)与时间x(min)之间的对应关系,根据图象,下列说法正确的是( )
A.小明吃早餐用了25min
B.食堂到图书馆的距离为0.6km
C.小明读报用了30min
D.小明从图书馆回家的速度为0.8km/min
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,正方形ABCD,∠EAF=45°,
(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;
(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;
(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx+c与x轴相交于点A(﹣1,0)和B(3,0),与y轴交于点C,连接AC、BC,且∠ACB=90°.
(1)求二次函数的解析式;
(2)如图(1),若N是AC的中点,M是BC上一点,且满足CM=2BM,连AM、BN相交于点E,求点M的坐标和△EMB的面积;
(3)如图(2),将△AOC沿直线BC平移得到△A′O′C′,再将△A′O′C′沿A′C′翻折得到△A′O′C′,连接AO′,AC′,请问△AO′C′能否构成等腰三角形?若能,请求出所有符合条件的点C的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,
(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α= °;β= °.
(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.
(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知在矩形ABCD中,AD=10,E是CD上一点,且DE=5,点P是BC上一点,PA=10,∠PAD=2∠DAE.
(1)求证:∠APE=90°;
(2)求AB的长;
(3)如图2,点F在BC边上且CF=4,点Q是边BC上的一动点,且从点C向点B方向运动.连接DQ,M是DQ的中点,将点M绕点Q逆时针旋转90°,点M的对应点是M′,在点Q的运动过程中,①判断∠M′FB是否为定值?若是说明理由.②求AM′的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com