精英家教网 > 初中数学 > 题目详情

【题目】如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=8,BE=2.则AB2AC2的值为(  )

A. 4 B. 6 C. 10 D. 16

【答案】D

【解析】

根据折叠的性质得到AE=AC,DE=CD,ADBC,由勾股定理得到AB2=AD2+BD2,AC2=AD2+CD2,两式相减,通过整式的化简即可得到结论.

∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,

AE=AC,DE=CD,ADBC,

AB2=AD2+BD2,AC2=AD2+CD2

AB2﹣AC2=AD2+BD2﹣AD2﹣CD2=BD2﹣CD2=(BD+CD)(BD﹣CD)=BCBE,

BC=8,BE=2,

AB2﹣AC2=8×2=16.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是(

A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.

1请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;

2如图,在中,点分别在上,设相交于点,若.请你写出图中一个与相等的角,并猜想图中哪个四边形是等对边四边形;

3中,如果是不等于的锐角,点分别在上,且.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线PC交O于A,C两点,AB是O的直径,AD平分PAB交O于点D,过D作DE垂直PA,垂足为E.

(1)求证:DE是⊙O的切线;

(2)若AE=1,AC=4,求直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

如图,在正方形ABCD中,点EF分别在CDBC上,且BF=CE,连接BEAF相交于点G,则下列结论不正确的是( )

ABE=AF B∠DAF=∠BEC C∠AFB+∠BEC=90° DAG⊥BE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图1,抛物线y=ax2+bx+2x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C,连接AC,BC.D为坐标平面第四象限内一点,且使得△ABD△ABC全等.

(1)求抛物线的表达式.

(2)请直接写出点D的坐标,并判断四边形ACBD的形状.

(3)如图2,将△ABD沿y轴的正方形以每秒1个单位长度的速度平移,得到△A′B′D′,A′B′BC交于点E,A′D′AB交于点F.连接EF,AB′,EFAB′交于点G.设运动的时间为t(0≤t≤2)秒.

当直线EF经过抛物线的顶点T时,请求出此时t的值;

请直接写出点G经过的路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BCAC=6,以BC为直径的O与边AB相交于点DDEAC,垂足为点E

(1)求证:点DAB的中点;

(2)求点O到直线DE的距离.

查看答案和解析>>

同步练习册答案