精英家教网 > 初中数学 > 题目详情
16.如图,∠1=∠2,∠3=∠4,且∠2+∠3=90°,试说明AB∥CD.

分析 根据已知可证明∠1+∠2+∠3+∠4=180°,根据同旁内角互补,两直线平行可得结论.

解答 证明:∵∠1=∠2,∠3=∠4,且∠2+∠3=90°,
∴∠1+∠2+∠3+∠4=180°,
即∠BFG+∠FGD=180°,
∴AB∥CD.

点评 此题主要考查了平行线的判定,关键是掌握同旁内角互补,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,在平面直角坐标系中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,抛物线y=ax2+bx+c(a<0)经过B、C两点,则$\frac{b}{a}$的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,∠AEC=70°,∠B=35°,EF平分∠AEC,试说明ED∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,如果∠1=∠3,可判定BF∥DE;如果∠1=∠2,可判定AB∥CD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)($\sqrt{6}$+2$\sqrt{8}$)$\sqrt{3}$;
(2)(5$\sqrt{2}$-2$\sqrt{5}$)2
(3)(2$\sqrt{2}$-1)(2$\sqrt{2}$+1);
(4)(4$\sqrt{6}$-4$\sqrt{\frac{1}{2}}$+3$\sqrt{8}$)÷2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算下列各题:
(1)$2\sqrt{2}÷\frac{1}{2}\sqrt{50}×\frac{1}{2}\sqrt{\frac{3}{4}}$
(2)$\sqrt{45}-3\sqrt{\frac{1}{2}}+\frac{1}{2}\sqrt{20}+\sqrt{0.125}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知AB∥CD,试说明∠1+∠3+∠5=∠2+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.圆O的两条直径AB⊥CD,∠AOE=50°,∠DOF是∠BOF的2倍.
(1)求圆心角∠EOF的度数;
(2)扇形COF的面积与扇形COE的面积比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知⊙O的半径OA=3,PA是⊙O的切线,A为切点,PO交⊙O于点B,PA=4,求PB的长.

查看答案和解析>>

同步练习册答案