【题目】如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点
(1)求b,k的值;
(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围;
(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线没有交点时,求m的取值范围.
【答案】(1)b=5,k=4;(2);(3)1<m<9.
【解析】
(1)把B(4,1)分别代入y=﹣x+b和y=,即可得到b,k的值;
(2)根据反比例函数的性质,即可得到函数值y的取值范围;
(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,依据﹣x+5﹣m=,可得△=(m﹣5)2﹣16,当直线与双曲线只有一个交点时,根据△=0,可得m的值.
解:(1)∵直线 y=﹣x+b 过点 B(4,1),
∴1=﹣4+b,
解得 b=5,
∵反比例函数y=的图象过点 B(4,1),
∴k=4;
(2)∵k=4>0,
∴当 x>0 时,y 随 x 值增大而减小,
∴当 2≤x≤6 时,
≤y≤2;
(3)将直线 y=﹣x+5 向下平移 m 个单位后解析式为 y=﹣x+5﹣m,
设直线 y=﹣x+5﹣m 与双曲线y= 只有一个交点,
令﹣x+5﹣m=,整理得 x2+(m﹣5)x+4=0,
∴△=(m﹣5)2﹣16=0,
解得 m=9 或 1.
∴直线与双曲线没有交点时,1<m<9.
科目:初中数学 来源: 题型:
【题目】2018年9月9日兰州市秦王川国家湿地公园在万众瞩目中盛大开园,公园被分为六大板块,分别为:亲水运动公园、西北戴维营、私人农场区、湿地生态培育区、丝路古镇、湿地科普活动区(分别记为A,B,C,D,E,F),为了了解游客“最喜欢板块”的情况,随机对部分游客进行问卷调查,规定每个人从这六个板块中选择一个,并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息回答下列问题:
(1)这次调查的样本容量是 ,a= ;
(2)扇形统计图中“C”对应的圆心角为 ;
(3)补全条形统计图;
(4)若2019年预计有100000人进园游玩,请估计最喜欢板块为“B”的游客人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O直径,CD为⊙O的切线,C为切点,过A作CD的垂线,垂足为D.
(1)求证:AC平分∠BAD;
(2)若⊙O半径为5,CD=4,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线与y轴交于点A,它的顶点为点B.
(1)点A的坐标为______,点B的坐标为______(用m表示);
(2)已知点M(-6,4),点N(3,4),若抛物线与线段MN恰有一个公共点,结合函数图象,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为( )
A.3B.C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
(1)求此抛物线的解析式;
(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:
该校被抽取的男生跳绳成绩频数分布直方图
(1)本次调查中,男生的跳绳成绩的中位数在________等级;
(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y=2x的图象与反比例函数y=的图象交于A,B两点,过点A作AC垂直x轴于点C,连接BC.若△ABC的面积为2.
(1)求k的值;
(2)直接写出>2x时,自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com