【题目】为评估九年级学生在“新冠肺炎”疫情期间“空中课堂”的学习效果,某中学抽取了部分参加调研测试的学生成绩作为样本,并把样本分为优、良、中、差四类,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生;
(2)通过计算补全条形统计图;
(3)该校九年级共有320人参加了这次调研测试,请估算该校九年级共有多少名学生的成绩达到了优秀?
科目:初中数学 来源: 题型:
【题目】如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.
(1)求抛物线L2对应的函数表达式;
(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 ,∠AFB=∠
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AC∥DE,当AB=8,CE=2时,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为(单位:km),乘坐地铁的时间(单位:min)是关于的一次函数,其关系如下表:
地铁站 | A | B | C | D | E |
x/km | 7 | 9 | 11 | 12 | 13 |
y1/min | 16 | 20 | 24 | 26 | 28 |
(1)求关于的函数解析式;
(2)李华骑单车的时间(单位:min)也受的影响,其关系可以用=2-11+78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数抛物线过点和,对称轴为直线.
(1)求二次函数的表达式和顶点的坐标.
(2)将抛物线在坐标平面内平移,使其过原点,若在平移后,第二象限的抛物线上存在点,使为等腰直角三角形,请求出抛物线平移后的表达式,并指出其中一种情况的平移方式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC和△BDE都是等腰直角三角形,∠ACB=∠BDE=90°,点F是AE的中点,连接DF,CF.
(1)如图1,点D,E分别在AB,BC边上,填空:CF与DF的数量关系是 ,位置关系是 ;
(2)如图2,将图1中的△BDE绕B顺时针旋转45°得到图2,请判断(1)中CF与DF的数量关系和位置关系是否仍然成立,如果成立,请加以证明;如果不成立,请说明理由;
(3)如图3,将图1中的△BDE绕B顺时针旋转90°得到图3,如果BD=2,AC=3,请直接写出CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组:.请结合连意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com