精英家教网 > 初中数学 > 题目详情
7.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是(  )
A.2B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{2}$

分析 连接BD、OC,根据矩形的性质得∠BCD=90°,再根据圆周角定理得BD为⊙O的直径,利用圆周角定理得到∠BOC=2∠A=120°,根据含30°的直角三角形三边的关系得到CD=$\frac{1}{2}$BD=1,BC=$\sqrt{3}$CD=$\sqrt{3}$,然后根据矩形的面积公式求解.

解答 解:连结BD、OC,如图,

∵四边形BCDE为矩形,
∴∠BCD=90°,
∴BD为⊙O的直径,
∴BD=2,
∵△ABC为等边三角形,
∴∠A=60°,
∴∠BOC=2∠A=120°,
而OB=OC,
∴∠CBD=30°,
在Rt△BCD中,CD=$\frac{1}{2}$BD=1,BC=$\sqrt{3}$CD=$\sqrt{3}$,
∴矩形BCDE的面积=BC•CD=$\sqrt{3}$.
故选:B.

点评 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、等边三角形的性质和矩形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,∠ABC=∠ADC,DE是∠ABC的角平分线,BF是∠ADC的角平分线,∠1=∠3,求证:DE∥BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如果方程组$\left\{\begin{array}{l}{2a-3b=7m}\\{a+3b=-m}\end{array}\right.$的解也是方程3a+b=5的一个解,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知($\frac{n}{m}$)-1=$\frac{5}{3}$,求的$\frac{m}{m+n}$+$\frac{m}{m-n}$-$\frac{{n}^{2}}{{m}^{2}-{n}^{2}}$值为$\frac{41}{16}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在Rt△ABC中,∠ACB=90°,AB=5,sin∠CAB=$\frac{4}{5}$,D是斜边AB上一点,过点A作AE⊥CD,垂足为E,AE的延长线交BC于点F.
(1)当tan∠BCD=$\frac{1}{2}$时,求线段BF的长;
(2)当BF=$\frac{5}{4}$时,求线段AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,正△ABC的边长是2,点M是边AB上任意一点(可与A,B重合),作MD⊥BC于D,作DE⊥AC于E,作EN⊥AB于N,给出以下结论:①MN的最大值是$\frac{3}{2}$;②当M是AB的中点时,AN=$\frac{5}{8}$;③当M,N重合时,AN=$\frac{2}{3}$;④当△MBD≌△EAN时,AN=$\frac{1}{2}$,其中正确的结论有②③.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知,四边形ABCD,连接AC,∠ABC=∠BAC=∠DAC=$\frac{1}{2}$∠ADC,若DC=2AD=4,则△ABC的面积为3$\sqrt{15}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,抛物线y=-x2+bx+c的图象与x轴交于点A(-1,0)和点B,与y轴交于点C(0,3),抛物线的顶点为点D.
(1)求抛物线和直线AD的解析式;
(2)点Q是抛物线一象限内一动点,过点Q作QN∥AD交BC于N,QH⊥AB交BC于点M,交AB于点H(如图1),当点Q坐标为何值时,△QNM的周长最大,求点Q的坐标以及△QNM周长的最大值;
(3)直线AD与y轴交于点F,点E是点C关于对称轴的对称点,点P是线段AE上一动点,将△AFP沿着FP所在的直线翻折得到△A′FP(如图2),当三角形A′FP与△AED重叠部分为直角三角形时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,AB,CD相交于点O,OE是∠AOC的平分线,∠BOC=130°,∠BOF=140°,则∠EOF的度数为(  )
A.95B.65C.50D.40

查看答案和解析>>

同步练习册答案