【题目】如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及其延长线分别交AC,BC于点G,F.
(1)求证:DF垂直平分AC;
(2)若弦AD=10,AC=16,求⊙O的半径.
【答案】(1)见解析;(2)⊙O的半径为.
【解析】
(1)根据“切线的性质和垂径定理”进行分析证明即可;
(2)如下图,连接AO,由垂径定理可得AG=AC=8,这样在Rt△ADG中由勾股定理可得GD=6,设⊙O的半径为r,则OG=r-6,由此在Rt△AOG中由勾股定理建立关于r的方程,解方程即可求得r的值.
(1)∵DE是⊙O的切线,且DF过圆心O,
∴DF⊥DE.
又∵AC∥DE,∴DF垂直平分AC.
(2)如下图,连接AO,
∵AG=GC,AC=16,
∴AG=8.
∴在Rt△AGD中,GD=,
设⊙O的半径为r,则OG=r-6,
∵ 在Rt△AOG中,,
∴.
解得r=.即⊙O的半径为.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.
(1)若∠C=40°,求∠BAD的度数;
(2)若AC=5,DC=4,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)因式分解:-28m3n2+42m2n3-14m2n
(2)因式分解:9a2(x-y)+4b2(y-x)
(3)求不等式的负整数解
(4)解不等式组,把它们的解集在数轴上表示出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九年级甲、乙两班分别选5名同学参加“奋发向上,崇德向善”演讲比赛,其预赛成绩如图所示:
(1)根据上图填写下表:
(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪班的成绩较好.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.
(1)学校离他家多远?从出发到学校,用了多少时间?
(2)王老师吃早餐用了多少时间?
(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点A6的坐标是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.
(1)求证:BF=AC;
(2)求证:CE=BF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABO中,∠AOB=90°,OA=,OB=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.
(1)如图①,当E点恰好落在线段AB上时,求E点坐标;
(2)在(Ⅰ)问的条件下,将△ODE沿x轴的正半轴向右平移得到△O′D′E′,O′E′、D′E′分别交AB于点G、F(如图②)求证OO′=E′F;
(3)若点D沿x轴正半轴向右移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,请直接写出y与x的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com