【题目】如图,双曲线y=经过Rt△BOC斜边上的点A,且满足
,与BC交于点D,S△BOD=21,求:
(1)S△BOC
(2)k的值.
【答案】(1)S△BOC=25;(2)k=8
【解析】
(1)过点A作AE⊥OC于点E,交OD于点F,由平行线分线段成比例可得=
=
=
,利用面积比是相似比的平方得
=
=
,根据反比例函数图象性质得S△AOE=S△ODC,所以
=
=
,进而△BOC的面积.(2) 设A(a,b),由(1)可得S△OCD=4 ,进而可得ab=8,从而求出k的值.
解:过点A作AE⊥OC于点E,交OD于点F,
∵AE∥BC, ,
∴=
=
=
,
∴=
=
,
∵ S△AOE=S△ODC,
∴=
=
,
∴S△BOC=25,
(2)设A(a,b),
∵点A在第一象限,
∴k=ab>0,
∵S△BOC=25,S△BOD=21,
∴S△OCD=4 即ab=4,
∴ab=8,
∴k=8.
科目:初中数学 来源: 题型:
【题目】有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.
(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.
(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.
(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.
(1)求证:△BCP≌△DCQ;
(2)延长BP交直线DQ于点E.
①如图2,求证:BE⊥DQ;
②若△BCP是等边三角形,请画出图形,判断△DEP的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系,已知四边形
是矩形,且
(0,6),
(8,0),若反比例函数
的图象经过线段
的中点
,交
于点
,交
于点
.设直线
的解析式为
.
(1)求反比例函数和直线的解析式;
(2)求的面积:
(3)请直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.
请根据以上信息解答下列问题:
(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为________;
(2)请补全条形统计图;
(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;
(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.
依据以上信息解答以下问题:
(1)分别求出14岁和16岁的学生人数,并补全条形统计图;
(2)这个样本的众数是_____岁,中位数是_____岁;
(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是( )
A. (2015,0) B. (2015,1) C.(2015,2) D.(2016,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经销一种小家电,每个小家电的成本为20元,市场调查发现,该种小家电每天的销售量y(个)与销售单价x(元)的函数图象如图.设这种小家电每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)如果物价部门规定这种小家电的销售单价不高于32元,该商店销售这种小家电每天要获得400元的销售利润,销售单价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com