【题目】如图1,反比例函数(k>0)图象经过等边△OAB的一个顶点B,点A坐标为(2,0),过点B作BM⊥x轴,垂足为M.
(1)求点B的坐标和k的值;
(2)若将△ABM沿直线AB翻折,得到△ABM',判断该反比例函数图象是从点M'的上方经过,还是从点M'的下方经过,又或是恰好经过点M',并说明理由;
(3)如图2,在x轴上取一点A1,以AA1为边长作等边△AA1B1,恰好使点B1落在该反比例函数图象上,连接BB1,求△ABB1的面积.
【答案】(1)k=;(2)该反比例函数图象是从点M'的下方经过;理由见解析;(3)△ABB1的面积为.
【解析】
(1)由△OAB为等边三角形及OA=2,可得出OM,BM的长,进而可得出点B的坐标,由点B的坐标利用反比例函数图象上点的坐标特征可求出k的值;
(2)过点M′作M′C⊥x轴,垂足为点C,由折叠的性质,可知:AM′=AM=1,∠BAM′=∠BAM=60°,在Rt△ACM′中,通过解直角三角形可求出AC,CM′的长,进而可得出OC的长,利用反比例函数图象上点的坐标特征可求出反比例函数图象与直线CM′交点的纵坐标,将其与点M′的纵坐标比较后即可得出结论;
(3)过点B1作B1D⊥x轴,垂足为点D,设AA1=a,则AD=a,B1D=a,OD=2+a,进而可得出点B1的坐标,利用反比例函数图象上点的坐标特征可求出a的值,进而可得出MD,B1D,AD的长,再结合S△ABB1=S梯形BMDB1S△BMAS△ADB1即可求出△ABB1的面积.
(1)∵△OAB为等边三角形,OA=2,
∴OM=OA=1,BM=OA=,
∴点B的坐标为(1,).
∵反比例函数图象经过点B,
∴k=.
(2)该反比例函数图象是从点M'的下方经过,理由如下:
过点M′作M′C⊥x轴,垂足为点C,如图1所示.
由折叠的性质,可知:AM′=AM=1,∠BAM′=∠BAM=60°,
∴∠M′AC=180°﹣∠BAM﹣∠BAM′=60°.
在Rt△ACM′中,AM′=1,∠ACM′=90°,∠M′AC=60°,
∴∠AM′C=30°,
∴AC=AM′=,CM′=AM′=.
∴OC=OA+AC=,
∴点M′的坐标为(,).
当x=时,,
∵<,
∴该反比例函数图象是从点M'的下方经过.
(3)过点B1作B1D⊥x轴,垂足为点D,如图2所示.
设AA1=a,则AD=a,B1D=a,OD=2+a,
∴点B1的坐标为(2+a,a).
∵点B1在该反比例函数的图象上,
∴(2+a)a=,
解得:a1=﹣2﹣2(舍去),a2=2﹣2,
∴MD=AM+AD=,B1D=a=﹣,AD=a=﹣1,
∴S△ABB1=S梯形BMDB1S△BMAS△ADB1
=(BM+B1D)MD﹣BMAM﹣B1DAD,
,
.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2-2x-1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价元件与每天销售量件之间满足如图所示的关系.
求出y与x之间的函数关系式;
写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数和一次函数y=kx﹣1的图象都经过点P(m,﹣3m).
(1)求点P的坐标和这个一次函数的解析式;
(2)若点M(a,y1)和点N(a+1,y2)都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明y1大于y2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,甲、乙、丙、丁四位同学共同研究二次函数y=x2﹣2x+c(c是常数).甲发现:该函数的图象与x轴的一个交点是(﹣2,0);乙发现:该函数的图象与y轴的交点在(0,﹣4)上方;丙发现:无论x取任何值所得到的y值总能满足c﹣y≤1;丁发现:当﹣1<x<0时,该函数的图象在x轴的下方,当3<x<4时,该函数的图象在x轴的上方.通过老师的最后评判得知这四位同学中只有一位同学发现的结论是错误的,则该同学是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
【1】求证:△ABC≌△DCB
【2】过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的平分线交⊙O于点D,过点D作ED⊥AE,垂足为E,交AB的延长线于F.
(1)求证:ED是⊙O的切线;
(2)若AD=4,AB=6,求FD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知□ABCD的两边AB、BC的长是关于x的一元二次方程方程的两个实数根.
(1)试说明:无论m取何值,原方程总有两个实数根;
(2)当m为何值时,□ABCD是菱形?求出这时菱形的边长;
(3)若AB﹦2,求BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com