精英家教网 > 初中数学 > 题目详情

【题目】如图, AOB 的一边 OA 为平面镜, AOB 37°36 ,在 OB 上有一点 E ,从 E 点射出 一束光线经 OA 上一点 D 反射,反射光线 DC 恰好与 OB 平行,则 DEB 的度数是_°.

【答案】75.2

【解析】

过点DDF垂直AOOB于点F,根据题意知,DF∠CDE的角平分线,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.

:过点DDF⊥AOOB于点F.

∵入射角等于反射角

∠1=∠3

∵CD∥OB

∴∠1=∠2(两直线平行,内错角相等)

∴∠2=∠3(等量代换)

在Rt△DOF中,∠ODF=90°,∠AOB=37°36′

∴∠2=90°-37°36′=52°24′

∴在△DEF中,∠DEB=180°-2∠2=75°12′=75.2°

故答案为75.2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】点P是正方形ABCD边AB上一点(不与A,B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )

A. 75° B. 60° C. 45° D. 30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.

(1)求证:BD是⊙O的切线;

(2)若点E是劣弧BC上一点,弦AEBC相交于点F,且CF=9,cosBFA=,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于给定的一次函数y=ax+ba0),把形如的函数称为一次函数y=ax+ba0)的衍生函数.已知矩形ABCD的顶点坐标分别为A10),B12),C(-32),D(-30).

1)已知函数y=2x+l.

①若点P(-1m)在这个一次函数的衍生函数图像上,则m= .

②这个一次函数的衍生函数图像与矩形ABCD的边的交点坐标分别为 .

2)当函数y=kx-3k>0)的衍生函数的图象与矩形ABCD2个交点时,k的取值范围是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l经过⊙O的圆心O,且与⊙O交于AB两点,点C⊙O上,且∠AOC30°,点P是直线l上的一个动点(与圆心O不重合),直线CP⊙O相交于另一点Q,如果QPQO,则∠OCP

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,对于一个图形通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图 1 可以得到 (a 2b)(a b) a 3ab 2b,请解答下列问题:

1)写出图 2 所表示的数学等式:      

2)已知 a b c 12 ab bc ac 40 ,利用(1)中所得结论.求abc的值;

3)图 3 中给出了若干个边长为 a 和边长为 b 的小正方形纸片、若干个长为 b 宽为 a 的长方 形纸片,选用这些纸片拼出一个图形,使得它的面积是 2a 7ab 3b .画出该图形,并利用该图形把多项式 2a 7ab 3b分解因式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在东西向的绿道上设有一个岗亭,佳佳从岗亭出发以的速度沿绿道巡逻.规定向东巡逻为正,向西巡逻为负,巡逻情况记录(单位:)如下:

1)第六次巡逻结束时,佳佳在岗亭的哪一边?

2)在第几次巡逻结束时,佳佳离岗亭最远?

3)佳佳一共巡逻多少时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=1,且过点(﹣30).下列说法:①abc02ab=04a+2b+c0④若(﹣5y1),(y2)是抛物线上两点,则y1y2

其中说法正确的是(  )

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示,设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需要测量就能知道周长的正方形的标号为(

A.B.C.D.

查看答案和解析>>

同步练习册答案