精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC内接于⊙OAC是直径,点DAC延长线上一点,且∠DBC=∠BAC

1)求证:BD是⊙O的切线;(2)求的值;(3)如图,直径AC=5,求△ABF面积.

【答案】1)证明略;(2;(3)△ABF的面积为.

【解析】

1)连接OB.欲证明BD是切线,只要证明DBOB即可;

2)由DBC∽△DAB,推出,在RtABC中,由,推出,设CDa,则BD2aAD4aAC3a,由此即可解决问题;

3)作AHBF,连接OF,先根据及勾股定理求出AB=2,然后由三角函数求出BH=AH,再根据同角三角函数可求出HF=,最后根据三角形面积公式求解即可.

解:(1)如图,连接OB

AC是直径,

∴∠ABC90°

OBOAOC

∴∠BAC=∠OBA,∠OBC=∠OCB

∵∠BAC=∠DBC,∠BAC+∠BCA90°

∴∠DBC+∠OBC90°

∴∠OBD90°,即OBBD

BD是⊙O的切线.

2)∵∠D=∠D,∠DBC=∠BAC

∴△DBC∽△DAB

RtABC中,∵

CDa,则BD2aAD4aAC3a

3)如图,作AHBF,连接OF

AB=2BC

,即

解得:BC=(负值已舍去),

AB=2

AC是直径,

∴∠FOA=90°

∴∠FBA=45°

BH=AH=AB·cos45°=2·

又∵∠BCA=BFA

∴∠BAC=HAF

HF=

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点的坐标为.

1)请用直尺(不带刻度)和圆规作一条直线,它与轴和轴的正半轴分别交于点和点,且关于直线对称.(作图不必写作法,但要保留作图痕迹.

2)请求出(1)中作出的直线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B 两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛PA港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.

(1)AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);

(2)甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(0,1).

(1)画出△ABC向右平移3个单位长度所得的△A1B1C1;写出C1点的坐标;

(2)画出将△ABC绕点B按逆时针方向旋转90°所得的△A2B2C2;写出C2点的坐标;

(3)在(2)的条件下求点A所经过路径的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

(2)如果家庭月均用水量大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?

(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;;则对于图①来说,BD可以看作是正_____边形的边长;若正n边形和正(n+1)边形内接于同一个圆,连接与公共顶点相邻同侧两个不同正多边形的顶点可以看做是_____边形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+4分别交x轴、y轴于AC两点,抛物线y=﹣x2+mx+4经过点A,且与x轴的另一个交点为点B.连接BC,过点CCDx轴交抛物线于点D

1)求抛物线的函数表达式;

2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;

3)点My轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点CMNP为顶点的四边形是菱形,求菱形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设ODm

(1)问题发现

如图1,△CDE的形状是   三角形.

(2)探究证明

如图2,当6m10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.

(3)解决问题

是否存在m的值,使△DEB是直角三角形?若存在,请直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)(问题发现)如图1,在RtABC中,ABAC,∠BAC90°,点DBC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,请判断线段BEAF的数量关系并写出推断过程;

(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BECEAF,线段BEAF的数量关系有无变化?请仅就图2的情形给出证明;

(3)(结论运用)在(1)(2)的条件下,若△ABC的面积为2,当正方形CDEF旋转到BEF三点在同一直线上时,请直接写出线段AF的长.

查看答案和解析>>

同步练习册答案