精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于两点,对称轴与轴交于点,点,点,点是平面内一动点,且满足是线段的中点,连结.则线段的最大值是________________

【答案】

【解析】

首先通过解方程得出点A的坐标,然后进一步根据抛物线性质得出点CAB的中点,结合题意,利用勾股定理求出AQ,然后根据题意得出点P在以DE为直径的圆上,圆心Q点的坐标为(0),圆Q的半径为2,然后延长AQ较圆Q于点F,得出此时AF最大,再连接AP,利用三角形中位线性质进一步求解即可.

解方程可得

则:点A坐标为(30),点B坐标为(50)

∵抛物线的对称轴与轴交于点C

∴点CAB的中点,

设DE的中点为Q,则Q点的坐标为(0)

∴根据勾股定理可得:AQ=

∵∠DPE=90°,

∴点P在以DE为直径的圆上,圆心Q点的坐标为(0),圆Q的半径为2

如图,延长AQ较圆Q于点F,此时AF最大,最大值为

再连接AP

∵点M是线段PB中点,

CM为△ABP的中位线,

CM=AP

CM的最大值为:

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解学生在假期中的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目“进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.

1m__________n__________

2)扇形统计图中科学类”所对应扇形圆心角度数为__________°

3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是直线与反比例函数为常数)的图象的交点.过点轴的垂线,垂足为,且

1)求点的坐标及的值;

2)已知点,过点作平行于轴的直线,交直线于点,交反比例函数为常数)的图象于点,交垂线于点.若,结合函数的图象,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小宇设计了一个随机碰撞模拟器:在模拟器中有三种型号的小球,它们随机运动,当两个小球相遇时会发生碰撞(不考虑多个小球相撞的情况).若相同型号的两个小球发生碰撞,会变成一个型小球;若不同型号的两个小球发生碰撞,则会变成另外一种型号的小球,例如,一个型小球和一个型小球发生碰撞,会变成一个型小球.现在模拟器中有型小球12个,型小球9个,型小球10个,如果经过各种两两碰撞后,最后只剩一个小球.以下说法:

①最后剩下的小球可能是型小球;

②最后剩下的小球一定是型小球;

③最后剩下的小球一定不是型小球.

其中正确的说法是:(

A.B.②③C.D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线My=-x2+2bx+c与直线ly=9x+14交于点A,其中点A的横坐标为-2

1)请用含有b的代数式表示c:

2)若点B在直线l上,且B的横坐标为-1,点C的坐标为(b5).

①若抛物线M还过点B,直接写出该抛物线的解析式;

②若抛物线M与线段BC恰有一个交点,结合函数图象,直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,于点,过点与边相切于点,交于点的直径.

1)求证:

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,,以点为圆心,长为半径在矩形内画弧,交边于点,连接于点,则图中阴影部分面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线AM上有一点BAB6.点C是射线AM上异于B的一点,过CCDAM,且CDAC.过D点作DEAD,交射线AME. 在射线CD取点F,使得CFCB,连接AF并延长,交DE于点G.设AC3x

1 CB点右侧时,求ADDF的长.(用关于x的代数式表示)

2)当x为何值时,△AFD是等腰三角形.

3)若将△DFG沿FG翻折,恰使点D对应点落在射线AM上,连接.此时x的值为 (直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题发现如图1,在中,,连接交于点.填空:①的值为______;②的度数为______

2)类比探究如图2,在中,,连接的延长线于点.请判断的值及的度数,并说明理由;

3)拓展延伸在(2)的条件下,将绕点在平面内旋转,所在直线交于点,若,请直接写出当点与点在同一条直线上时的长.

查看答案和解析>>

同步练习册答案