精英家教网 > 初中数学 > 题目详情

二次函数y=ax2+bx+c的图象如图所示,则下列结论①abc<0,②b2-4ac>0,③2a+b>0,④a+b+c<0,⑤ax2+bx+c=-2的解为x=0,其中正确的有


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
C
分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:①由抛物线的开口方向向上可推出a>0;
因为对称轴在y轴右侧,对称轴为x=>0,
又因为a>0,b<0;
由抛物线与y轴的交点在y轴的负半轴上,
∴c<0,故abc>0;
②由抛物线与x轴有两个交点可以推出b2-4ac>0.
③由图象可知:对称轴x=>0且对称轴x=<1,
∴2a+b>0,
④由图象可知:当x=1时y<0,
∴a+b+c<0.
⑤欲求方程ax2+bx+c=-2的解,也就是函数y=ax2+bx+c中y=-2时,x的值,
由图象可知,y=-2时x=0.
∴②、③、④、⑤正确.
故选C.
点评:考查二次函数y=ax2+bx+c系数符号的确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴交于精英家教网点C(0,
3
)
,当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c,当x=
12
时,有最大值25,而方程ax2+bx+c=0的两根α、β,满足α33=19,求a、b、c.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确结论的序号是
②③④
②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:
①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是
①②③
①②③
(把正确的序号都填上).

查看答案和解析>>

同步练习册答案