【题目】如图,在矩形ABCD中,AB=9,AD=3,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.
(1)求∠CQP的度数;
(2)当x取何值时,点R落在矩形ABCD的AB边上;
(3)①求y与x之间的函数关系式;
②当x取何值时,重叠部分的面积等于矩形面积的.
【答案】(1)∠CQP=30°;(2)x=2;(3)①,②
【解析】
(1)由于PQ与BD平行,∠CQP=∠CDB,因此只需求出∠CDB的度数即可.可在直角三角形ABD中,根据AB,AD的长求出∠ABD的度数,由∠CQP=∠CDB=∠ABD即可得出∠CQP的度数;
(2)当R在AB上时,三角形PBR为直角三角形,且∠BPR=60°(可由(1)的结论得出),根据折叠的性质PR=CP=x,然后用x表示出BP的长,在直角三角形可根据∠RPB的余弦值得出关于x的方程即可求出x的值;
(3)①要分两种情况进行讨论:
一、当R在AB或矩形ABCD的内部时,重合部分是三角形PQR,那么重合部分的面积可通过求三角形CQP的面积来得出,在直角三角形CQP中,已知了∠CQP的度数,可用CP即x的值表示出CQ的长,然后根据三角形的面积计算公式可得出y,x的函数关系式;
二、当R在矩形ABCD的外部时,重合部分是个四边形的面积,如果设RQ,RP与AB的交点分别为E、F,那么重合部分就是四边形EFPQ,它的面积=△CQR的面积﹣△REF的面积.△CQR的面积在一已经得出,关键是求△REF的面积,首先要求出的是两条直角边RE,RF的表达式,可在直角三角形PBF中用一的方法求PF的长,即可通过RP﹣PF得出RF的长;在直角三角形REF中,∠RFE=∠PFB=30°,可用其正切值表示出RE的长,然后可通过三角形的面积计算公式得出三角形REF的面积.进而得出S与x的函数关系式;
②可将矩形的面积代入①的函数式中,求出x的值,然后根据自变量的取值范围来判定求出的x的值是否符合题意.
解:(1)如图,∵四边形ABCD是矩形,
∴AB=CD,AD=BC.
又AB=9,AD=3,∠C=90°,
∴CD=9,BC=3.
∴tan∠CDB=,
∴∠CDB=30°.
∵PQ∥BD,
∴∠CQP=∠CDB=30°;
(2)如图1,由轴对称的性质可知,△RPQ≌△CPQ,
∴∠RPQ=∠CPQ,RP=CP.
由(1)知∠CQP=30°,
∴∠RPQ=∠CPQ=60°,
∴∠RPB=60°,
∴RP=2BP.
∵CP=x,
∴PR=x,PB=3﹣x.
在△RPB中,根据题意得:2(3﹣x)=x,
解这个方程得:x=2;
(3)①当点R在矩形ABCD的内部或AB边上时,
,,
∵△RPQ≌△CPQ,
∴当时,
当R在矩形ABCD的外部时(如图2),,
在Rt△PFB中,
∵∠RPB=60°,
∴PF=2BP=2(﹣x),
又∵RP=CP=x,
∴RF=RP﹣PF=3x﹣6,
在Rt△ERF中,
∵∠EFR=∠PFB=30°,
∴ER=x﹣6.
∴S△ERF=ER×FR=x2﹣18x+18,
∵y=S△RPQ﹣S△ERF,
∴当时,y=-x2+18x﹣18.
综上所述,y与x之间的函数解析式是:.
②矩形面积=,
当时,函数随自变量的增大而增大,
所以y的最大值是6,而矩形面积的的值=,
而,所以,当时,y的值不可能是矩形面积的;
当时,根据题意,得:,
解这个方程,得,
因为,
所以不合题意,舍去.
所以.
综上所述,当时,△PQR与矩形ABCD重叠部分的面积等于矩形面积的.
科目:初中数学 来源: 题型:
【题目】如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.
求证:四边形是平行四边形.
若,,则在点的运动过程中:
①当________时,四边形是矩形,试说明理由;
②当________时,四边形是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知直线y=a与抛物线交于A、B两点(A在B的左侧),交y轴于点C
(1)若AB=4,求a的值
(2)若抛物线上存在点D(不与A、B重合),使,求a的取值范围
(3)如图2,直线y=kx+2与抛物线交于点E、F,点P是抛物线上的动点,延长PE、PF分别交直线y=-2于M、N两点,MN交y轴于Q点,求QM·QN的值。
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,比如,他们研究过1,3,6,10,……,由于这些数可以用图中所示的三角形点阵标表示,他们就将其称为三角形数,第n个三角形数可以用表示.
请根据以上材料,证明以下结论:
(1)任意一个三角形数乘8再加1是一个完全平方数;
(2)连续两个三角形数的和是一个完全平方数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新华商场销售某种冰箱,每台进价为2500元,销售价为2900元,平均每天能售出8台;调查发现,当销售价每降低50元,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱应该降价多少元?若设每台冰箱降价x元,根据题意可列方程( )
A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000
C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
组别 | 分组(单位:元) | 人数 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | a |
C | 60≤x<90 | b |
D | 90≤x<120 | 8 |
E | 120≤x<150 | 2 |
根据以上图表,解答下列问题:
(1)填空:这次调查的同学共有 人,a+b= ,m= ;
(2)求扇形统计图中扇形B的圆心角的度数;
(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离的长.
参考数据:°,°,°,°,°,°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com