分析 (1)由于AB是⊙O的直径,根据“直径所对的圆周角是直角”可直接得出结论;
(2)首先利用勾股定理得出BD的长,作DE⊥OA,垂足为E,证得△ADB∽△DEB,利用相似三角形的性质可得DE,BE,可得OE,由AC是⊙O的切线,得到AC⊥OA,于是得到∠ACO+∠AOC=90°,又由于OD⊥OC,得到∠AOC+∠AOD=90°,推出△DEO∽△OAC,根据相似三角形的性质可得结果.
解答 解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
理由是直径所对的圆周角是直角;
故答案为:90°,直径所对的圆周角是直角;![]()
(2)作DE⊥OA,垂足为E,
∵∠ADB=90°,AD=2,AB=2$\sqrt{5}$,
∴BD=4,
∵∠DEB=∠ADB,∠B=∠B,
∴△ADB∽△DEB,
∴$\frac{BD}{AB}=\frac{DE}{AD}=\frac{BE}{BD}$,即$\frac{4}{2\sqrt{5}}=\frac{DE}{2}=\frac{BE}{4}$,
解得:DE=$\frac{4\sqrt{5}}{5}$,BE=$\frac{8\sqrt{5}}{5}$,
∴OE=$\frac{3\sqrt{5}}{5}$,
∵AC是⊙O的切线,
∴AC⊥OA,
∴∠ACO+∠AOC=90°,
∵OD⊥OC,
∴∠AOC+∠AOD=90°,
∴∠ACO=∠AOD,
∵∠DEO=90°=∠OAC,
∴△DEO∽△OAC,
∴$\frac{DE}{OA}$=$\frac{OE}{AC}$,
∴$\frac{\frac{4\sqrt{5}}{5}}{\sqrt{5}}=\frac{\frac{3\sqrt{5}}{5}}{AC}$,
解得:AC=$\frac{3\sqrt{5}}{4}$.
点评 本题考查了切线的性质,相似三角形的判定和性质,勾股定理,圆周角定理,作DE⊥OA,构造直角三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | BC,∠ACB | B. | DE,DC,BC | C. | EF,DE,BD | D. | CD,∠ACB,∠ADB |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com