精英家教网 > 初中数学 > 题目详情

【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,ANBN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.

【特例探究】

(1)如图1,当tanPAB=1,c=4时,a= ,b=

如图2,当PAB=30°,c=2时,a= ,b=

【归纳证明】

(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.

【拓展证明】

(3)如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BECE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.

【答案】(1)4,4(2)a2+b2=5c2,理由见解析.(3)4.

【解析】

试题分析:(1)①首先证明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解决问题.②连接EF,在RT△PAB,RT△PEF中,利用30°性质求出PA、PB、PE、PF,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2.设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.

试题解析:(1)解:如图1中,∵CE=AE,CF=BF,

∴EF∥AB,EF=AB=2

∵tan∠PAB=1,

∴∠PAB=∠PBA=∠PEF=∠PFE=45°,

∴PF=PE=2,PB=PA=4,

∴AE=BF==2

∴b=AC=2AE=4,a=BC=4

如图2中,连接EF,

,∵CE=AE,CF=BF,

∴EF∥AB,EF=AB=1,

∵∠PAB=30°,

∴PB=1,PA=

在RT△EFP中,∵∠EFP=∠PAB=30°,

∴PE=,PF=

∴AE==,BF==

∴a=BC=2BF=,b=AC=2AE=

(2)结论

证明:如图3中,连接EF.

∵AF、BE是中线,

∴EF∥AB,EF=AB,

∴△FPE∽△APB,

==

设FP=x,EP=y,则AP=2x,BP=2y,

∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2

b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2

c2=AB2=AP2+BP2=4x2+4y2

∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2

(3)解:如图4中,在△AGE和△FGB中,

∴△AGE≌△FGB,

∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,

同理可证△APH≌△BFH,

∴AP=BF,PE=CF=2BF,

即PE∥CF,PE=CF,

∴四边形CEPF是平行四边形,

∴FP∥CE,

∵BE⊥CE,

∴FP⊥BE,即FH⊥BG,

∴△ABF是中垂三角形,

由(2)可知AB2+AF2=5BF2

∵AB=3,BF=AD=

∴9+AF2=5×(2

∴AF=4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同

(1)求甲、乙两种救灾物品每件的价格各是多少元?

(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移方法正确的是( )

A. 将l1向右平移3个单位长度 B. 将l1向右平移6个单位长度

C. 将l1向上平移2 个单位长度 D. 将l1向上平移4个单位长度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC一定是( )

A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:2m+1的平方根是±53m+n+1的平方根是±7,求m+2n的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x 为何值时,函数 y2x6 能满足下列要求:(1 y3;(2y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为6的等边三角形,PAC边上一动点,由AC运动(与AC不重合),QCB延长线上一点,与点P同时以相同的速度由BCB延长线方向运动(Q不与B重合),过PPEABE,连接PQABD.当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x(x﹣2)=0的解是(
A.x=0
B.x1=2
C.x1=0,x2=2
D.x=2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为( )
A.518=2(106+x)
B.518﹣x=2×106
C.518﹣x=2(106+x)
D.518+x=2(106﹣x)

查看答案和解析>>

同步练习册答案