精英家教网 > 初中数学 > 题目详情
12.若无理数a满足:-4<a<-1,请写出两个你熟悉的无理数:-$\sqrt{2}$,-π.

分析 无理数就是无限不循环小数,依据定义即可作出解答.

解答 解:无理数有:-$\sqrt{2}$,-π.(答案不唯一).
故答案是:-$\sqrt{2}$,-π.

点评 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,$\sqrt{6}$,0.8080080008…(每两个8之间依次多1个0)等形式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.平面直角坐标系中的三是角形ABC如图所示,若三角形A1B1C1是由三角形ABC平移后得到的,且三角形ABC中的任意一点P(x,y)经过平移后的对应点为P1(x-3,y-5),
(1)求点A1,B1,C1的坐标;
(2)求三角形A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算题:
(1)2x2+1=9;     
(2)2(x-3)3-54=0
(3)$|\sqrt{6}-\sqrt{2}|+|1-\sqrt{2}|+|3-\sqrt{6}|$
(4)(-$\sqrt{3}$)2-$\sqrt{\frac{1}{4}}$-$\root{3}{-0.125}$+$\sqrt{(-4)^{2}}$-|-6|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算
(1)-22-(π-5)0-|-3|
(2)2m3•m2-(m42÷m3
(3)-x3+(-4x)2x;                 
(4)2-2-32÷(3.144+π)0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=$\sqrt{20}$.
以上结论中,你认为正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:$(\sqrt{5}+1)(\sqrt{5}-1)-{(-\frac{1}{3})^{-2}}+|{1-\sqrt{2}}|-{(π-3)^0}+\sqrt{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知三角形ABC及三角形ABC外一点D,平移三角形ABC,使点A移动到点D,并保留画图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,BD是?ABCD的一条对角线,AE⊥BD,CF⊥BD,试猜想AE和CF的数量关系,并对你的猜想进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.实数a、b在数轴上对应点的位置如图所示:则3a-$\sqrt{(a-b)^{2}}$=4a-b.

查看答案和解析>>

同步练习册答案