【题目】如图,在半径为2的⊙O中,弦AB=2,⊙O上存在点C,若AC=2,则∠BAC的度数为___.
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=(k≠0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为4.
(Ⅰ)求k和m的值;
(Ⅱ)设C(x,y)是该反比例函数图象上一点,当1≤x≤4时,求函数值y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为( )
A. 32 B. 40 C. 24 D. 30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料并解答问题
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为,可设,
则
∵对任意上述等式均成立,
∴且,∴,
∴
这样,分式被拆分成了一个整式与一个分式的和
解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式
(2)求出的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AC平分∠BAD,过点C作CE⊥AB于点E,且CD=CB,∠ABC+∠ADC=180°.求证:AE=(AB+AD).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,是的两条角平分线,且,交于点.
(1)如图1,用等式表示,,这三条线段之间的数量关系,并证明你的结论;
小东通过观察、实验,提出猜想:.他发现先在上截取,使,连接,再利用三角形全等的判定和性质证明即可.
①下面是小东证明该猜想的部分思路,请补充完整:
ⅰ)在上截取,使,连接,则可以证明与 全等,判定它们全等的依据是 ;
ⅱ)由,,是的两条角平分线,可以得出 °;
②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想的过程.
(2)如图2,若 ,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.
(1)依题意补全图 1;
(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b且回答:当点A位于那条线段的延长线上时,线段AC的长取得最大值,且最大值为多少(用含a、b的式子表示).
(2)应用:点A为线段BC外一动点,且BC=4,AB=2,如图2所示,分别以AB,AC为边,作等边三解形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com