精英家教网 > 初中数学 > 题目详情

如图1,AB是O的直径,点C在AB的延长线上,AB=4,BC=2,P是O上半部分的一个动点,连接OP,CP.

(1)求OPC的最大面积;

(2)求OCP的最大度数;

(3)如图2,延长PO交O于点D,连接DB,当CP=DB时,求证:CP是O的切线.

 

 

【解析】

试题分析:(1)在△OPC中,底边OC长度固定,因此要想△OPC的面积最大,则要OC边上的高最大;由图形可知,当OP⊥OC时高最大;

(2)要想∠OCP的度数最大,由图形可知当PC与⊙O相切才能满足,根据切线的性质即可求得;

(3)连接AP,BP通过△ODB≌△BPC可求得DP⊥PC,从而求得PC是⊙O的切线

试题解析:(1)∵AB=4,

∴OB=2,OC=OB+BC=4.

在△OPC中,设OC边上的高为h,

∵S△OPC=OC•h=2h,

∴当h最大时,S△OPC取得最大值.

观察图形,当OP⊥OC时,h最大,如答图1所示:

此时h=半径=2,S△OPC=2×2=4.

∴△OPC的最大面积为4.

(2)当PC与⊙O相切时,∠OCP最大.如答图2所示:

∵tan∠OCP=

∴∠OCP=30°

∴∠OCP的最大度数为30°.

(3)证明:如答图3,连接AP,BP.

∴∠A=∠D=∠APD=∠ABD,

∵∠AOP=∠DOB

∴AP=BD,

∵CP=DB,

∴AP=CP,

∴∠A=∠C

∴∠A=∠D=∠APD=∠ABD∠C,

在△ODB与△BPC中

∴△ODB≌△BPC(SAS),

∴∠D=∠BPC,

∵PD是直径,

∴∠DBP=90°,

∴∠D+∠BPD=90°,

∴∠BPC+∠BPD=90°,

∴DP⊥PC,

∵DP经过圆心,

∴PC是⊙O的切线.

考点:1、最值问题;2、切线的性质与判定;3、圆周角定理 

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(浙江温州卷)数学(解析版) 题型:解答题

一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球

(1)求从袋中摸出一个球是黄球的概率;

(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个黑球的概率是,求从袋中取出黑球的个数.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(浙江杭州卷)数学(解析版) 题型:选择题

( )

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:选择题

如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥。如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是

A. 五棱柱 B. 六棱柱 C. 七棱柱 D. 八棱柱

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:选择题

用矩形纸片折出直角的平分线,下列折法正确的是

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:解答题

已知梯形ABCD,请使用无刻度直尺画图.

(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;

(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:选择题

如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为(  )

A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:解答题

在一只不透明的布袋中装有红球、黄球各若干个,这些球除颜色外都相同,均匀摇匀.

(1)若布袋中有3个红球,1个黄球.从布袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程);

(2)若布袋中有3个红球,x个黄球.

请写出一个x的值 ,使得事件“从布袋中一次摸出4个球,都是黄球”是不可能的事件;

(3)若布袋中有3个红球,4个黄球.

我们知道:“从袋中一次摸出4个球,至少有一个黄球”为必然事件.

请你仿照这个表述,设计一个必然事件:

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:填空题

计算= .

 

查看答案和解析>>

同步练习册答案