【题目】P是三角形ABC内一点,射线PD∥AC,射线PE∥AB.
(1)当点D,E分别在AB,BC上时,
①补全图1;
②猜想∠DPE与∠A的数量关系,并证明;
(2)当点D,E都在线段BC上时,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
【答案】(1)①补全图形,如图所示.见解析;②∠DPE+∠A=180°,证明见解析;(2)不成立,此时∠DPE=∠A.理由见解析.
【解析】
(1)根据平行线的性质,即可得到∠A=∠BDP,∠DPE+∠BDP=180°,即可得到∠DPE与∠A的数量关系.
(2)先反向延长射线PD交AB于点D1,可知∠DPE+∠D1PE=180°,由(1)结论可知∠D1PE+∠A=180°,进而得出∠DPE=∠A.
(1)①补全图形,如图1所示.
②∠DPE+∠A=180°.
证明:∵PD∥AC,
∴∠A=∠BDP.
∵PE∥AB,
∴∠DPE+∠BDP=180°,
∴∠DPE+∠A=180°.
(2)不成立,此时∠DPE=∠A.
理由如下:如图2,反向延长射线PD交AB于点D1,可知∠DPE+∠D1PE=180°.
由(1)结论可知∠D1PE+∠A=180°.
∴∠DPE=∠A.
科目:初中数学 来源: 题型:
【题目】一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离y1千米,轿车离甲地的距离y2千米,y1、y2关于x的函数图象如图所示:
①根据图象直接写出y1、y2关于x的函数关系式;
②当两车相遇时,求此时客车行驶的时间.
③相遇后,两车相距200千米时,求客车又行驶的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】其工厂甲.乙两个部门各有员工人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取名员工进行了生产技能测试,测试成绩(百分制)如下:
甲:78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙:93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
(1)按如下分数段整理、描述这两组样本数据:
成绩人数部门 | ||||||
甲 | ||||||
乙 |
(说明:成绩分及以上为生产技能优秀,分为生产技能良好,分为生产技能合格,分以下为生产技能不合格)
(2)若按照甲部门的样本数据,在列频数分布表时,若取组距为,则这小组的频数为 ,频率为 ;
(3)若按照乙部门的样本数据画出扇形统计图,则表示生产技能优秀部分的圆心角是 度;
得出结论:
(4)估计乙部门生产技能优秀的员工人数为 ;
(5)可以推断出部门员工的生产技能水平较高,你的理由为 (说出一条即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),在正方形一边上取中点,并沿虚线剪开,用两块图形拼一拼,能否拼出平行四边形、梯形或三角形?画图解释你的判断.
(2)如图(2)E为正方形ABCD边BC的中点,F为DC的中点,BF与AE有何关系?请解释你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,二次函数的图象与坐标轴交于, , 三点,其中点的坐标为,点的坐标为,连接, .动点从点出发,在线段上以每秒个单位长度的速度向点作匀速运动;同时,动点从点出发,在线段上以每秒个单位长度的速度向点作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为秒.连接.
()填空: __________, __________.
()在点, 运动过程中, 可能是直角三角形吗?请说明理由.
()在轴下方,该二次函数的图象上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出运动时间;若不存在,请说明理由.
()如图②,点的坐标为,线段的中点为,连接,当点关于直线的对称点恰好落在线段上时,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.
(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为 ,EG与CG的位置关系为 ,请证明你的结论.
(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.
(3)在图2中,若BC=4,BF=3,连接EC,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容。
思考过程
因为 DE∥BC(已知)
所以∠3=∠EHC ( )
因为∠3=∠B(已知)
所以∠B=∠EHC ( )
所以 AB∥EH ( )
∠2+ ( )=180°( )
因为∠1=∠4( )
所以∠1+∠2=180°(等量代换)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角尺按图①所示的方式叠放在一起,现将含45°角的三角尺ADE固定不动,把含30°角的三角尺ABC绕顶点A顺时针旋转角α(α=∠BAD且0°<α<180°),使两块三角尺至少有一组边平行.
(1)如图②,当α=________°时,BC∥DE.
(2)请你分别在图③,④中,各画一种符合要求的图形,标出α,并完成下列各题.
图③中,当α=________°时,________∥________;
图④中,当α=________°时,________∥________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.
(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com