精英家教网 > 初中数学 > 题目详情

【题目】(1)如图1,等边三角形ABC的边长为4,两顶点B、C分别在y轴的正半轴和x轴的正半轴上运动,显然,当OABC于点D时,顶点A到原点O的距离最大,试求出此时线段OA的长.

(2)如图2,在RtACB中,∠ACB=90°,AC=3,BC=4,两顶点B、C分别在x轴的正半制和y轴的正半轴上运动,求出顶点A到原点O的最大距离.

(3)如图3,正六边形ABCDEF的边长为4,顶点B、C分别在x轴正半轴和y轴正半轴上运动,直接写出顶点E到原点O的距离的最大值和最小值.

【答案】(1)OA=2+2;(2)2+;(3)2+,4.

【解析】

(1)解直角三角形求出AD、OD即可;

(2)如图2中,取BC的中点K,连接OK,AK,OA.因为OA≤AK+OK,推出O、K、A共线时,OA的值最大;

(3)如图3中,取BC的中点K,连接OK、EK、OE.因为OE≤OK+EK,推出O、K、E共线时,OE的值最大,当点CO重合时,OE的值最小.

(1)如图1中,

∵△ABC是等边三角形,

AB=BC=AC=4,ACD=60°,

ADBC,

BD=CD,AD=ACsin60°=2

OD=BC=2,

OA=2+2

(2)如图2中,取BC的中点K,连接OK,AK,OA.

RtBOC中,OK=BC=2,

RtACK中,AK==

OA≤AK+OK,

O、K、A共线时,OA的值最大,最大值为2+

(3)如图3中,取BC的中点K,连接OK、EK、OE.

OK=BC=2,EC=4ECK=90°,

RtECK中,EK==2

OE≤OK+EK,

O、K、E共线时,OE的值最大,最大值为2+2

当点CO重合时,OE的值最小,最小值为4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与两坐标轴分别交于三点,一次函数的图象与抛物线交于两点.

求点的坐标;

当两函数的函数值都随着的增大而增大,求的取值范围;

当自变量满足什么范围时,一次函数值大于二次函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小芳用画正方形的办法画出下列一组图案,你能按规律继续画下去吗?想想其中有哪些相似图形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,A(0,3),B(4,0),C(﹣1,﹣1), P 线段 AB上一动点将线段 AB 绕原点 O 旋转一周 P 的对应点为 P′, P′C 的最大值为_____,最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC边上的一点,若∠B=36°,AB=AC=BD=2.

(1)求CD的长;

(2)利用此图求sin18°的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B=90°,AC为斜边向外作等腰直角三角形COA,已知BC=8,OB=10,则另一直角边AB的长为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,ABCO的顶点A,B的坐标分别是A(3,0),B(0,2),动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与四边形ABCO的边所在直线相切时,P点的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的部分对应值如下表:

0

1

3

1

3

1

则下列判断中正确的是( )

A. 拋物线开口向上 B. 拋物线与轴交于负半轴

C. 时, D. 方程的正根在3与4之间

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正确的结论是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

同步练习册答案