【题目】如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,且OC=OA
(1)求抛物线解析式;
(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值.
【答案】(1)y=﹣x2﹣2x+3;(2)MN=﹣m2﹣3m;S=﹣m2﹣m;当m=﹣时,MN最大,此时S=.
【解析】
(1)先求出点C坐标,再运用待定系数法求解即可;
(2)先求出直线AC的解析式,用m表示点M,N的坐标,即可表示线段MN的长度;根据S△ACM=S△AMN+S△CMN即可用m表示S△ACM;运用二次函数分析MN最值即可;
解:(1)由A(﹣3,0),且OC=OA可得C(0,3)
设抛物线解析式为y=a(x+3)(x﹣1),
将C(0,3)代入解析式得,﹣3a=3,解得a=﹣1,
∴抛物线解析式为y=﹣x2﹣2x+3.
(2)如图,
设直线AC解析式为y=kx+d
∵A(﹣3,0),C(0,3),
∴,
解得 ,
∴直线AC解析式为y=x+3,
设M(m,﹣m2﹣2m+3),则N(m,m+3),则MN=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m(﹣3<m<0),
S△ACM=S△AMN+S△CMN=MN×3=﹣m2﹣m,
MN=﹣m2﹣3m=﹣(m+)2+,
∵a=﹣1<0,﹣3<m=﹣1.5<0,
∴m=﹣时,MN最大,此时S=.
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣2x+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上
(1)求抛物线的解析式;
(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB≌△POC?若存在,求出点P的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)证明:不论取何值,该函数图像与轴总有公共点;
(2)若该函数的图像与轴交于点(0,3),求出顶点坐标并画出该函数图像;
(3)在(2)的条件下,观察图像,解答下列问题:
①不等式的的解集是 ;
②若一元二次方程有两个不相等的实数根,则的取值范围是 ;
③若一元二次方程在的范围内有实数根,则的取
值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市射击队打算从君君、标标两名运动员中选拔一人参加省射击比赛,射击队对两人的射击技能进行了测评.在相同的条件下,两人各打靶5次,成绩统计如下:
(1)填写下表:
平均数(环) | 中位数(环) | 方差(环2) | |
君君 |
| 8 | 0.4 |
标标 | 8 |
|
|
(2)根据以上信息,若选派一名队员参赛,你认为应选哪名队员,并说明理由.
(3)如果标标再射击1次,命中8环,那么他射击成绩的方差会 .(填“变大”“变小”或“不变”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.
(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?
(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于的一元二次方程.
(1)求证:无论k取不为1的任何值方程总有两个不相等的实数根.
(2)设是该方程的两个实数根,记,的值能为1吗?若能,求出此时的值;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com