【题目】定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=
AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为_____.
![]()
【答案】![]()
【解析】
根据
BCAH=
ABAC,可得AH=
,根据
ADBO=
BDAH,得OB=
,再根据BE=2OB=
,运用勾股定理可得EC.
设BE交AD于O,作AH⊥BC于H.
在Rt△ABC中,∠BAC=90°,AB=2,AC=3,
由勾股定理得:BC=
,
∵点D是BC的中点,
∴AD=DC=DB=
,
∵
BCAH=
ABAC,
∴AH=
,
∵AE=AB,DE=DB,
∴点A在BE的垂直平分线上,点D在BE的垂直平分线上,
∴AD垂直平分线段BE,
∵
ADBO=
BDAH,
∴OB=
,
∴BE=2OB=
,
∵DE=DB=CD,
∴∠DBE=∠DEB,∠DEC=∠DCE,
∴∠DEB+∠DEC=
×180°=90°,即:∠BEC=90°,
∴在Rt△BCE中,EC=
=![]()
.
故答案为:
.
科目:初中数学 来源: 题型:
【题目】如图,
,点
关于
轴的对称点为
点,点
在
轴的负半轴上,
的面积是
.
![]()
(1)求点
坐标;
(2)若动点
从点
出发,沿射线
运动,速度为每秒
个单位,设
的运动时间为
秒,
的面积为
,求
与
的关系式;
(3)在
的条件下,同时点Q从D点出发沿
轴正方向以每秒
个单位速度匀速运动,若点
在过
点且平行于
轴的直线上,当
为以
为直角边的等腰直角三角形时,求满足条件的
值,并直接写出点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求证:BE=AD;
![]()
(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一副直角三角板拼在一起得四边形ABCD,∠ACB=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点,若AB= 6
cm,点D′到BC的距离是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,在平面直角坐标系中,一次函数y=
x+3交x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.
(1)求点A,B的坐标.
(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.
(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数 y=-x+b 与反比例函数y=
(x>0)的图象交于 A,B 两点,与 x 轴、y轴分别交于C,D 两点,连接 OA,OB,过 A 作 AE⊥x 轴于点 E,交 OB 于点F,设点 A 的横坐标为 m. 若 S△OAF+S 四边形 EFBC=4,则 m 的值是( )
![]()
A. 1 B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
![]()
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求ΔABP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分12分)
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).
![]()
解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com