相关习题
 0  17283  17291  17297  17301  17307  17309  17313  17319  17321  17327  17333  17337  17339  17343  17349  17351  17357  17361  17363  17367  17369  17373  17375  17377  17378  17379  17381  17382  17383  17385  17387  17391  17393  17397  17399  17403  17409  17411  17417  17421  17423  17427  17433  17439  17441  17447  17451  17453  17459  17463  17469  17477  366461 

科目: 来源: 题型:解答题

古田是我县著名的红色旅游胜地,下表和统计图是古田某景点一周的抽样统计参观人数和门票价格.
星期
人数100120100100160230240
(1)把上表中一周的参观人数作为一个样本,直接指出这个样本的中位数是______,众数是______,平均数是______.
(2)分析表中数据还可得到一些信息,如双休日参观人数远远高于平时等,请尝试再写出两条相关信息;
①______
②______
(3)若“五一”黄金周有甲、乙两个旅游团到该景点参观,两团人数之和恰为上述样本数据的中位数,乙团人数不超过50人,设两团分别购票共付W元,甲团人数为x人.
①求W关于x的函数关系式,并写出自变量的取值范围;
②若甲团人数不超过100人,请说明两团合起来购票比分开购票最多可节约多少钱?

查看答案和解析>>

科目: 来源: 题型:解答题

已知抛物线 y=x2-4x+c与直线y=x+k都经过原点O,它们的另一个交点为A.
(1)直接写出抛物线与直线的函数解析式;
(2)求出点A的坐标及线段OA的长度.

查看答案和解析>>

科目: 来源: 题型:解答题

甲、乙两地相距12千米,某人骑车从甲地到乙地,由于出发时间比预定时间晚6分钟,实际行驶时,速度提高到原来的1.2倍,结果恰好在预定的时间到达乙地,求原来预定的行驶速度是每小时多少千米?

查看答案和解析>>

科目: 来源: 题型:解答题

如图,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与抛物线y=ax2(a<0)交于A、B两点,请解答以下问题:

(1)若测得OA=OB=2数学公式(如图1),求a的值;
(2)对同一条抛物线,将三角板绕点O旋转到如图2所示位置时,过B作BF⊥x轴于点F,测得OF=1,写出此时点B的坐标,并求点A的横坐标;
(3)对该抛物线,将三角板绕点O旋转任意角度时,交点A、B的连线段总经过一个固定的点,试求出该点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.
譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.
问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”.
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.
(1)把一个正方形分割成9个小正方形.
一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形.
另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形.
(2)把一个正方形分割成10个小正方形.
方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形.
(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)
(4)把一个正方形分割成n(n≥9)个小正方形.
方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依此类推,即可把一个正方形分割成n(n≥9)个小正方形.
从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.
类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.
(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图);
(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图);
(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法);

(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).

查看答案和解析>>

科目: 来源: 题型:填空题

如图,点P是双曲线数学公式(x>0)上动点,在y轴上取点Q,使得以P、Q、O 为顶点的三角形是含有30°角的直角三角形,则符合条件的点Q的坐标是________.

查看答案和解析>>

科目: 来源: 题型:填空题

当x________时,(3x+2)0=1有意义;若代数式(2x+1)-4无意义,则x=________.

查看答案和解析>>

科目: 来源: 题型:填空题

因式分解:5ax2-10axy+5ay2=________.

查看答案和解析>>

科目: 来源: 题型:填空题

如图,用有花纹和没有花纹的两种正方形地面砖按图中所示的规律拼成若干图案,则第n个图案中没有花纹的地面砖有________块.

查看答案和解析>>

科目: 来源: 题型:解答题

盒子里装有6张扑克牌,其中有3张红桃,2张梅花,1张方块,从中任意摸一张,猜想摸到方块的概率是多少?请你与同学用实验的方法加以验证.

查看答案和解析>>

同步练习册答案