科目: 来源: 题型:
【题目】已知关于x的方程x2﹣(m+2)x+2m﹣1=0.
(1)求证:此方程有两个不相等的实数根;
(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;
(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】去学校食堂就餐,经常会在一个买菜窗口前等待,经调查发现,同学的舒适度指数y与等时间x(分)之间满足反比例函数关系,如下表:
等待时间x | 1 | 2 | 5 | 10 | 20 |
舒适度指数y | 100 | 50 | 20 | 10 | 5 |
已知学生等待时间不超过30分钟
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)若等待时间8分钟时,求舒适度的值;
(3)舒适度指数不低于10时,同学才会感到舒适.请说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( )
![]()
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在等边三角形ABC中,已知点O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是( )
![]()
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,GE⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH︰∠ECH=2︰7,则∠EGF=50°.其中正确的有( )
![]()
A. ①②③④ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,点
在第一象限,过点A向x轴作垂线,垂足为点B,连接OA,
,点M从O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.
求a的值;
当
时,
请探究
,
,
之间的数量关系,并说明理由;
试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由.
当
时,请求出t的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为更好地培养学生兴趣,开展“拓展课程走班选课”活动,随机抽查了部分学生,了解他们最喜爱的项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图. 最喜爱的传统文化项目类型频数分布表
项目类型 | 频数 | 频率 |
书法类 | 18 | a |
围棋类 | 14 | 0.28 |
喜剧类 | 8 | 0.16 |
国画类 | b | 0.20 |
![]()
根据以上信息完成下列问题:
(1)频数分布表中a= , b=;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
⑴若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
⑵若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并求出最大获利。
甲 | 乙 | |
进价(元/件) | 15 | 35 |
售价(元/件) | 20 | 45 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com