相关习题
 0  348266  348274  348280  348284  348290  348292  348296  348302  348304  348310  348316  348320  348322  348326  348332  348334  348340  348344  348346  348350  348352  348356  348358  348360  348361  348362  348364  348365  348366  348368  348370  348374  348376  348380  348382  348386  348392  348394  348400  348404  348406  348410  348416  348422  348424  348430  348434  348436  348442  348446  348452  348460  366461 

科目: 来源: 题型:

【题目】如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AEDC的交点为O,连接DE

(1)求证:ADE≌△CED

(2)求证:DEAC

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点A的坐标是(﹣1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.

(1)求点C的坐标及抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标;并直接写出直线BC、直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】12分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为am,计算:

1)窗户的面积;

2)窗框的总长;

3)若a1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①,将一副三角板的两个锐角顶点放到一块,∠AOB=45°,COD=30°,OM,ON分别是∠AOC,BOD的平分线.

(1)当∠COD绕着点O逆时针旋转至射线OBOC重合时(如图②),则∠MON的大小为________;

(2)如图③,在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时,求∠MON的大小,写出解答过程;

(3)在∠COD绕点O逆时针旋转过程中,∠MON=________°.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B在第一象限内,BO=10,sin∠BOA=
(1)在图中,求作△ABO的外接圆(尺规作图,不写作法但需保留作图痕迹);
(2)求点B的坐标与cos∠BAO的值;
(3)若A,O位置不变,将点B沿x轴向右平移使得△ABO为等腰三角形,请求出平移后点B的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】8分)如图,平行四边形ABCD中,对角线ACBD相交于点O,若EFAC上两动点,分别从AC两点以相同的速度1cm/sCA运动.

1)四边形DEBF是平行四边形吗?请说明理由;

2)若BD=12cmAC=16cm,当运动时间t为何值时,四边形DEBF是矩形?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若 =1:2,求AE:EB:BD的值(请你直接写出结果);
(3)若点C是弧AB的中点,已知AB=4,求CECP的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明家O,学校A和公园C的平面示意图如图所示,图上距离OA=2cm,OC=2.5cm.

(1)学校A、公园C分别在小明家O的什么方向上?

(2)若学校A到小明家O的实际距离是400m,求公园C到小明家O的实际距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1 . 试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的 ,请说明理由.(写出证明及计算过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=60°,坡长AB=20 m,为加强水坝强度,降坝底从A处后水平延伸到F处,使新的背水坡角∠F=45°,求AF的长度(结果精确到1米,参考数据: 1.414, ≈1.732).

查看答案和解析>>

同步练习册答案