相关习题
 0  348320  348328  348334  348338  348344  348346  348350  348356  348358  348364  348370  348374  348376  348380  348386  348388  348394  348398  348400  348404  348406  348410  348412  348414  348415  348416  348418  348419  348420  348422  348424  348428  348430  348434  348436  348440  348446  348448  348454  348458  348460  348464  348470  348476  348478  348484  348488  348490  348496  348500  348506  348514  366461 

科目: 来源: 题型:

【题目】如图,如果直线l上依次有3个点ABC,那么

(1)在直线l上共有多少射线?多少条线段?

(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?

(3)如果在直线l上增加到n个点,则共有多少条射线?多少条线段?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角坐标系中, B08),D100),一次函数y=x+的图象过C16n),与x轴交于A点。

1)求证:四边形ABCD为平行四边形;

2)将AOB绕点O顺时针旋转,旋转得A1OB1,问:能否使以点OA1DB1为顶点的四边形是平行四边形?若能,求点A1的坐标;若不能,请说明理由;

查看答案和解析>>

科目: 来源: 题型:

【题目】画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得2BC=AB,再反向延长AC至点D,使得AD=AC.

(1)准确地画出图形,并标出相应的字母;

(2)线段DC的中点是哪个?线段AB的长是线段DC长的几分之几?

(3)求出线段BD的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,求 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,ABCD中,若AB=1,BC=2,则ABCD1阶准菱形.

(1)判断与推理:

①邻边长分别为23的平行四边形是 阶准菱形

②小明为了剪去一个菱形,进行如下操作:如图2,把ABCD沿BE折叠(点EAD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABEF是菱形.

(2)操作、探究与计算:

①已知ABCD是邻边长分别为1,a(a>1),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;

②已知ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r(r>0),则ABCD

阶准菱形

查看答案和解析>>

科目: 来源: 题型:

【题目】O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O.

1 2

(1)如图1,将三角板MON的一边ON与射线OB重合时,则∠MOC=      ;

(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】摩拜单车公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分非常了解比较了解一般了解不了解四种类型,分别记为.根据调查结果绘制了如下尚不完整的统计图.

1)本次问卷共随机调查了 名市民,扇形统计图中 .

2)请根据数据信息补全条形统计图.

3扇形统计图中“D类型所对应的圆心角的度数是 .

4从这次接受调查的市民中随机抽查一个,恰好是不了解的概率是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,MON为锐角.下列说法:MOP=MON;MOP=NOP=MON;MOP=NOP;MON=MOP+NOP.其中,能说明射线OP一定为∠MON的平分线的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
(3)现规定:摸到红球得5分,摸到黄球得3分,摸到蓝球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解决小区停车难的问题,某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.5万元,新建3个地上停车位和2个地下停车位需1.1万元.

(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?

(2)根据实际情况,该小区新建地上停车位不多于33个,且预计投资金额不超过11万元,共有几种建造方式?

查看答案和解析>>

同步练习册答案