相关习题
 0  348355  348363  348369  348373  348379  348381  348385  348391  348393  348399  348405  348409  348411  348415  348421  348423  348429  348433  348435  348439  348441  348445  348447  348449  348450  348451  348453  348454  348455  348457  348459  348463  348465  348469  348471  348475  348481  348483  348489  348493  348495  348499  348505  348511  348513  348519  348523  348525  348531  348535  348541  348549  366461 

科目: 来源: 题型:

【题目】阅读理解:

(1)如图(1),等边△ABC内有一点P到顶点A,B,C的距离分别为3,4,5,则∠APB=
分析:由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌ , 这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:BE2+CF2=EF2

查看答案和解析>>

科目: 来源: 题型:

【题目】为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目,为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的4名学生中有2名男生,2名女生.现从这4名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了考察某种大麦细长的分布情况,在一块试验田里抽取了部分麦穗.测得它们的长度,数据整理后的频数分布表及频数分直方图如下.根据以下信息,解答下列问题:

穗长x

频数

4.0≤x<4.3

1

4.3≤x<4.6

1

4.6≤x<4.9

2

4.9≤x<5.2

5

5.2≤x<5.5

11

5.5≤x<5.8

15

5.8≤x<6.1

28

6.1≤x<6.4

13

6.4≤x<6.7

11

6.7≤x<7.0

10

7.0≤x<7.3

2

7.3≤x<7.6

1

(Ⅰ)补全直方图;

(Ⅱ)共抽取了麦穗   棵;

(Ⅲ)频数分布表的组距是   ,组数是   

(Ⅳ)麦穗长度在5.8≤x<6.1范围内麦穗有多少棵?占抽取麦穗的百分之几?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面直角坐标系中,已知点A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1个单位长度,向右平移5个单位长度,可以得到三角形A′B′C′.

(Ⅰ)在图中画出△A′B′C′;

(Ⅱ)直接写出点A′、B′、C′的坐标;

(Ⅲ)写出A′C′AC之间的位置关系和大小关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】因市场竞争激烈,国商进行促销活动,决定对学习用品进行打八折出售,打折前,买2本笔记本和1支圆珠笔需要18元,买1本笔记本和2支圆珠笔需要12元.
(1)求打折前1本笔记本,1支圆珠笔各需要多少元.
(2)在促销活动时间内,购买50本笔记本和40支圆珠笔共需要多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1是一个新款水杯,水杯不盛水时按如图2所示的位置放置,这样可以快速晾干杯底,干净透气;将图2的主体部分的抽象成图3,此时杯口与水平直线的夹角35°,四边形ABCD可以看作矩形,测得AB=10cm,BC=8cm,过点A作AF⊥CE,交CE于点F.
(1)求∠BAF的度数;(sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)
(2)求点A到水平直线CE的距离AF的长(精确到0.1cm)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:E、F是ABCD的对角线AC上的两点,AF=CE,求证:∠CDF=∠ABE.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是 上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是(
A.15°
B.20°
C.25°
D.30°

查看答案和解析>>

科目: 来源: 题型:

【题目】如图中的图像(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为80.8千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.⑤汽车离出发地64千米是在汽车出发后1.2小时时。其中正确的说法共有( )

A.1个     B.2个      C.3个      D.4个

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是(
A.ED∥BC
B.ED⊥AC
C.∠ACE=∠BCE
D.AE=CE

查看答案和解析>>

同步练习册答案