科目: 来源: 题型:
【题目】下面是马小哈同学做的一道题:
解方程:![]()
解:①去分母,得 4(2x﹣1)=1﹣3(x+2)
②去括号,得 8x﹣4=1﹣3x﹣6
③移项,得8x+3x=1﹣6+4
④合并同类项,得 11x=﹣1
⑤系数化为1,得![]()
(1)上面的解题过程中最早出现错误的步骤是(填代号) ;
(2)请在本题右边正确的解方程:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】根据题意解答![]()
(1)如图1,已知E是矩形ABCD的边AB上一点,EF⊥DE交BC于点F,证明:△ADE∽△BFE.
(2)这个相似的基本图形像字母K,可以称为“K”型相似,但更因为图形的结构特征是一条线上有3个垂直关系,也常被称为“一线三垂直”,那普通的3个等角又会怎样呢?
变式一如图2,已知等边三角形ABC,点D、E分别为BC,AC上的点,∠ADE=60°.
①图中有相似三角形吗?请说明理由.
②如图3,若将∠ADE在△ABC的内部(∠ADE两边不与BC重合),绕点D逆时针旋转一定的角度,还有相似三角形吗?
(3)变式二如图4,隐藏变式1图形中的线段AE,在得到的新图形中.
①如果∠B=∠C=∠ADE=50°,图中有相似三角形吗?请说明理由.
②如图5,若∠B=∠C=∠ADE=∠a,∠a为任意角,还有相似三角形吗?
(4)交式三已知,相邻两条平形直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则cosa的值是(直接写出结果).
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出
名选手组成初中代表队和高中代表队参加学校决赛.每个队
名选手的决赛成绩如图所示:
![]()
填表:
平均数(分) | 中位数(分) | 众数(分) | |
初中代表队 |
|
| |
高中代表队 |
|
|
结合两队决赛成绩的平均数和中位数,分析哪个代表队的成绩较好;
计算两队决赛成绩的方差,并判断哪个代表队的成绩较为稳定.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=﹣x2+bx+c经过原点O和点P,已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3).![]()
(参考公式:y=ax2+bx+c(a≠0)的顶点坐标是(﹣
,
).
(1)若当n=4时求c,b并写出抛物线对称轴及y的最大值;
(2)求证:抛物线的顶点在函数y=x2的图像上;
(3)若抛物线与直线AD交于点N,求n为何值时,△NPO的面积为1;
(4)若抛物线经过正方形区域ABCD(含边界),请直接写出n的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】九年级数学兴趣小组经过市场调查,得到某种图书每月的销售与售价的关系为函数关系如下表:
售价(元/本) | 50 | 55 | 60 | 65 | … |
月销量(本) | 2000 | 1800 | 1600 | 1400 | … |
已知该图书的进价为每本30元,设售价为x元.
(1)请用含x的式子表示:①销售该图书每本的利润是元,②月销量是件.(用x表示直接写出结果)
(2)若销售图书的月利润为48000元,则每本图书需要售价多少元?
(3)设销售该图书的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线PA经过点A(-1,0)、点P(1,2),直线PB是一次函数y=-x+3的图象.
![]()
(1)求直线PA的表达式及Q点的坐标;
(2)求四边形PQOB的面积;
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图,在平面直角坐标系xOy中,正比例函数y=
x的图像经过点A,点A的纵坐标为6,反比例函数y=
的图像也经过点A,第一象限内的点B在这个反比例函数的图像上,过点B作BC∥x轴,交y轴于点C,且AC=AB,求: ![]()
(1)这个反比例函数的解析式;
(2)直线AB(一次函数)的表达式.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列变形中:
①由方程
=2去分母,得x﹣12=10;
②由方程
x=
两边同除以
,得x=1;
③由方程6x﹣4=x+4移项,得7x=0;
④由方程2﹣
两边同乘以6,得12﹣x﹣5=3(x+3).
错误变形的个数是( )个.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,将一张正方形纸片剪成四个大小一样的小正方形,然后将其中一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去。
(1)完成下表:
剪的次数 | 1 | 2 | 3 | 4 | 5 | ... | n |
小正方形的个数 | 4 | 7 | 10 | ... |
|
(2)
.(用含n的代数式表示)
(3)按上述方法,能否得到2018个小正方形?如果能,请求出n;如不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市为了更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过20立方米,每立方米按1.5元收费;如果超过20立方米,超过部分每立方米按1.8元收费,其余仍按每立方米1.5元计算,另外,超过的部分每立方米加收污水处理费1元,若某户一月份用水量
(
>20)立方米,问:
(1)该户一月份应交水费多少元?(请用含
的代数式表示)
(2)该户三月份用水量为32立方米,请问该户三月份应交水费多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com