科目: 来源: 题型:
【题目】小明在学习过程中遇到这样一个问题:
“一个木箱漂浮在河水中,随河水向下游漂去,在木箱上游和木箱下游各有一条小船,分别为甲船和乙船,两船距木箱距离相等,同时划向木箱,若两船在静水中划行的速度是30m/min,那么哪条小船先遇到木箱?”
小明是这样分析解决的:
小明想通过比较甲乙两船遇见木箱的时间,知道哪条小船先遇见木箱.设甲船遇见木箱的时间为xmin,乙船遇见木箱的时间为ymin,开始时两船与木箱距离相等,都设为am,如图1.
如图2,利用甲船划行的路程﹣木箱漂流的路程=开始时甲船与木箱的距离:
列方程:x(30+5)﹣5x=a
解得,x=![]()
所以甲船遇见木箱的时间为
min.
(1)参照小明的解题思路继续完成上述问题;
(2)借鉴小明解决问题的方法和(1)中发现的结论解决下面问题:
问题:“在一河流中甲乙两条小船,同时从A地出发,甲船逆流而上,乙船顺流而下;划行10分钟后,乙船发现船上木箱不知何时掉入水中,乙船立即通知甲船,两船同时掉头寻找木箱,若两船在静水中划行的速度是v(单位:m/min,v大于5),水流速度是5m/min,两船同时遇见木箱,那么木箱是出发几分钟后掉入水中的?”
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC.
(1)求∠APO+∠DCO的度数;
(2)求证:点P在OC的垂直平分线上.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】以直线AB上一点O为端点作射线OC,将一块直角三角板的直角顶点放在O处(注:∠DOE=90°).
![]()
(1)如图①,若直角三角板DOE的一边OD放在射线OB上,且∠BOC=60°,求∠COE的度数;
(2)如图②,将三板DOE绕O逆时针转动到某个位置时,若恰好满足5∠COD=∠AOE,且∠BOC=60°,求∠BOD的度数;
(3)如图③,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1.
(2)直接写出点A1,B1,C1的坐标.
A1 , B1 , C1 ;
(3)请你求出△A1B1C1的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形,如图所示.
(1)数一下每一个多面体具有的顶点数
、棱数
和面数
.并且把结果记入表中.
多面体 | 顶点数 | 面数 | 棱数 |
正四面体 | 4 | 4 | 6 |
正方体 | |||
正八面体 | |||
正十二面体 | |||
正二十面体 | 12 | 20 | 30 |
(2)观察表中数据,猜想多面体的顶点数
、棱数
和面数
之间的关系.
(3)伟大的数学家欧拉(Euler,1707-1783)证明了这一令人惊叹的关系式,即欧拉公式.若已知一个多面体的顶点数
=196,棱数
=294.请你用欧拉公式求这个多面体的面数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是( )
![]()
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒2°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为t(0秒≤t≤90秒).
(1)用含t的代数式表示∠MOA的度数.
(2)在运动过程中,当∠AOB第二次达到60°时,求t的值.
(3)在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t的值;如果不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com