科目: 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=10,点E在AD边上,已知B、E两点关于直线l对称,直线l分别交AD、BC边于点M、N,连接BM、NE.
(1)求证:四边形BMEN是菱形;
(2)若DE=2,求NC的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.![]()
(1)求抛物线解析式;
(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;
(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.
(1)若四边形ABCD为正方形.
①如图1,请直接写出AE与DF的数量关系;
②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;![]()
(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】百货商店销售某种冰箱,每台进价2500元。市场调研表明:当销售价为2900元时,平均每天能售出8台;每台售价每降低10元时,平均每天能多售出1台。(销售利润=销售价—进价)
(1)如果设每台冰箱降价x元,那么每台冰箱的销售利润为 元,平均每天可销售冰箱 台;(用含x的代数式表示)
(2)商店想要使这种冰箱的销售利润平均每天达到5600元,且尽可能地清空冰箱库存,每台冰箱的定价应为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】①下午 2 点 10 分时,钟表的时针和分针所成锐角是________;
②如图,射线 OC,OD 在∠AOB 的内部,射线 OM,ON 分别平分∠AOD,∠BOC, 且∠BON=50°,∠AOM=40°,∠COD=30°,则∠AOB 的度数为______.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y1=x+1与双曲线
(k>0)相交于点A、B,已知点A坐标(2,m).
(1)求k的值;
(2)求点B的坐标,并观察图象,写出当
时,x的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解初二学生参加户外活动的情况,某县教育局对其中500名初二学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如下统计图。(参加户外活动的时间分为四种类别:“0.5小时”,“1小时”,“1.5小时”,“2小时”)
![]()
请根据图示,回答下列问题:
(1)求学生每天户外活动时间的平均数,众数和中位数;
(2)该县共有12000名初二学生,请估计该县每天户外活动时间超过1小时的初二学生有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com