科目: 来源: 题型:
【题目】有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.
甲种糖果 | 乙种糖果 | 丙种糖果 | |
单价(元/千克) | 15 | 25 | 30 |
千克数 | 40 | 40 | 20 |
(1)求该什锦糖的单价.
(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)
(1)画出格点△ABC关于直线DE的对称的△A1B1C1;
(2)在DE上画出点P,使PA+PC最小;
(3)在DE上画出点Q,使QA﹣QB最大.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线l1过点A(0,4),点D(4,0),直线l2:
与x轴交于点C,两直线
,
相交于点B.
(1)求直线
的解析式和点B的坐标;
(2)求△ABC的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:△ABC是一张等腰直角三角形纸板,∠B=90°,AB=BC=1.
(1)要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在△ABC的边上.小林设计出了一种剪法,如图1所示.请你再设计出一种不同于图1的剪法,并在图2中画出来.
(2)若按照小林设计的图1所示的剪法来进行裁剪,记图1为第一次裁剪,得到1个正方形,将它的面积记为
,则
=___________;在余下的2个三角形中还按照小林设计的剪法进行第二次裁剪(如图3),得到2个新的正方形,将此次所得2个正方形的面积的和记为
,则
=___________;在余下的4个三角形中再按照小林设计的的剪法进行第三次裁剪(如图4),得到4个新的正方形,将此次所得4个正方形的面积的和记为
;按照同样的方法继续操作下去……,第
次裁剪得到_________个新的正方形,它们的面积的和
=______________.
![]()
![]()
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在《九章算术》中有求三角形面积公式“底乘高的一半”,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(
年—
年)提出了“三斜求积术”,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元
年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前
年—公元前
年)得出的,故我国称这个公式为海伦一秦九韶公式.它的表达为:三角形三边长分别为
、
、
,则三角形的面积
(公式里的
为半周长即周长的一半).
请利用海伦一秦九韶公式解决以下问题:
(
)三边长分别为
、
、
的三角形面积为__________.
(
)四边形
中,
,
,
,
,
,四边形
的面积为__________.
(
)五边形
中,
,
,
,
,
,
,五边形
的面积为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)将条形统计图补充完整;
(3)图2中“小说类”所在扇形的圆心角为 度;
(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知一次函数
的图象与x轴、y轴分别交于A、B两点且与反比例函数
的图象在第一象限交于C点,CD⊥
轴于D点,若∠CAD=
,AB =
,CD =![]()
(1)求点A、B、D的坐标;
(2)求一次函数的解析式;
(3)反比例函数的解析式;
(4)求△BCD的面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com