相关习题
 0  349376  349384  349390  349394  349400  349402  349406  349412  349414  349420  349426  349430  349432  349436  349442  349444  349450  349454  349456  349460  349462  349466  349468  349470  349471  349472  349474  349475  349476  349478  349480  349484  349486  349490  349492  349496  349502  349504  349510  349514  349516  349520  349526  349532  349534  349540  349544  349546  349552  349556  349562  349570  366461 

科目: 来源: 题型:

【题目】已知∠AOB=90°,OC是∠AOB的平分线,按以下要求解答问题.

(1)将三角板的直角顶点P在射线OC上移动,两直角边分别与OA,OB交于M,N,如图①,求证:PM=PN;

(2)将三角板的直角顶点P在射线OC上移动,一条直角边与OB交于N,另一条直角边与射线OA的反向延长线交于点M,并猜想此时①中的结论PM=PN是否成立,并说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】在图示的方格纸中,(1)画出△ABC关于MN对称的图形△A1B1C1

(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?

(3)在直线MN上找一点P,使得PB+PA最短.(不必说明理由).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为(

A.2
B.3
C.
D.6

查看答案和解析>>

科目: 来源: 题型:

【题目】如图ABCAD平分BACDGBC且平分BCDEABEDFACF

1)求证BE=CF

2)如果AB=8AC=6AEBE的长

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.

(1)求m、n的值;
(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;
(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=10,AD=6,点M为AB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点P、Q

(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)
(2)如果PQ与AB、CD都相交,试判断△MPQ的形状并证明你的结论;
(3)设AM=x,d为点M到直线PQ的距离,y=d2
①求y关于x的函数解析式,并指出x的取值范围;
②当直线PQ恰好通过点D时,求点M到直线PQ的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径

(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知:在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.

(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标;
(3)在(Ⅱ)的条件下,边OA上 的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知△ABC和△BDE都是等边三角形.则下列结论:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等边三角形;⑤HB平分∠AHD.其中正确的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案