相关习题
 0  349377  349385  349391  349395  349401  349403  349407  349413  349415  349421  349427  349431  349433  349437  349443  349445  349451  349455  349457  349461  349463  349467  349469  349471  349472  349473  349475  349476  349477  349479  349481  349485  349487  349491  349493  349497  349503  349505  349511  349515  349517  349521  349527  349533  349535  349541  349545  349547  349553  349557  349563  349571  366461 

科目: 来源: 题型:

【题目】如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)发现:

如图1,点A为线段BC外一动点,且BC=aAB=b

填空:当点A位于     时,线段AC的长取得最大值,且最大值为     (用含ab的式子表示)

(2)应用:

A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以ABAC为边,作等边三角形ABD和等边三角形ACE,连接CDBE

①请找出图中与BE相等的线段,并说明理由;

②直接写出线段BE长的最大值.

(3)拓展:

如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个三角形,使它的三边长都是有理数;

(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;

(3)在图3中,画一个正方形,使它的面积是10.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示.ABCD是四个村庄,BDC在一条东西走向公路的沿线上,BD=1km,DC=1km,村庄ACAD间也有公路相连,且公路AD是南北走向,AC=3km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2km,BF=0.7km.试求建造的斜拉桥长至少有多少千米?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线AB的解析式为y=2x+5,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AEFD四点在同一直线上,CEBFCE=BFB=C.(1)ABFDCE全等吗?请说明理由;(2)ABCD平行吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
其中正确结论的个数是(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ADBC相交于点OOA=ODOB=OC.下列结论正确的是(  )

A. AOB≌△DOC B. ABO≌△DOC C. A=C D. B=D

查看答案和解析>>

科目: 来源: 题型:

【题目】如图ABCABBCBEAC,∠1=∠2,AD=AB则下列结论不正确的是

A. BF=DF B. ∠1=∠EFD C. BF>EF D. FDBC

查看答案和解析>>

科目: 来源: 题型:

【题目】(题文)(问题引领)

问题1:在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结CG,先证明

△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是________________

(探究思考)

问题2:若将问题1的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,

∠ECF= ∠BCD, 问题1的结论是否仍然成立?请说明理由.

(拓展延伸)

问题3:在问题2的条件下,若点EAB的延长线上,点FDA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE、DF、EF之间存在什么样的等量关系?并说明理由.

查看答案和解析>>

同步练习册答案