相关习题
 0  349456  349464  349470  349474  349480  349482  349486  349492  349494  349500  349506  349510  349512  349516  349522  349524  349530  349534  349536  349540  349542  349546  349548  349550  349551  349552  349554  349555  349556  349558  349560  349564  349566  349570  349572  349576  349582  349584  349590  349594  349596  349600  349606  349612  349614  349620  349624  349626  349632  349636  349642  349650  366461 

科目: 来源: 题型:

【题目】如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BCE,若BC=20cm,则△DEB的周长为___cm.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为................... ................... ................... ....... .......... ..... .......... ..... ( )

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】具备下列条件的三角形中,不是直角三角形的是(

A. ∠A+∠B=∠C B. ∠B=∠C=∠A

C. ∠A=90°-∠B D. ∠A-∠B=90°

查看答案和解析>>

科目: 来源: 题型:

【题目】在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:我的日子终于好了”. 最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:

品种

产量(/每棚)

销售量(/每斤)

成本(/每棚)

香瓜

2000

12

8000

甜瓜

4500

3

5000

现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y.

根据以上提供的信息,请你解答下列问题:

(1)求出yx之间的函数关系式;

(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚? 才能使获得的利润不低于10万元.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,若△ABC和△DEF的面积分别为S1、S2 , 则(
A.S1= S2
B.S1= S2
C.S1=S2
D.S1= S2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,RtAOB的顶点O与原点重合,直角顶点Ax轴上,顶点B的坐标为(4,3),直线x轴、y轴分别交于点D、E,交OB于点F.

(1)写出图中的全等三角形及理由;

(2)OF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】【问题提出】 学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 , 可以知道Rt△ABC≌Rt△DEF. 第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF. 第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 , 则△ABC≌△DEF.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.
(1)求⊙O的半径;
(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐标系中描出各点,画出△ABC

(2)求△ABC的面积;

(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.

查看答案和解析>>

同步练习册答案