相关习题
 0  349541  349549  349555  349559  349565  349567  349571  349577  349579  349585  349591  349595  349597  349601  349607  349609  349615  349619  349621  349625  349627  349631  349633  349635  349636  349637  349639  349640  349641  349643  349645  349649  349651  349655  349657  349661  349667  349669  349675  349679  349681  349685  349691  349697  349699  349705  349709  349711  349717  349721  349727  349735  366461 

科目: 来源: 题型:

【题目】某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题

(1)2015年比2011年增加人;
(2)请根据扇形统计图求出2015年参与跑步项目的人数;
(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,名各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为 的等腰直角三角形DEF的费马点,则PD+PE+PF=

查看答案和解析>>

科目: 来源: 题型:

【题目】定义,我们把对角线互相垂直的四边形叫做垂美四边形.

概念理解:如图,在四边形ABCD中,如果AB=ADCB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.

性质探究:如图,垂美四边形ABCD两组对边AB、CDBC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.

问题解决:如图,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.若AC=2AB=5,则求证:△AGB≌△ACE;

②GE=

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,Rt△ABC中,∠C=90°,BC=6,AC=8.动点P从点A出发沿A—B—C的方向以每秒2个单位的速度运动.P的运动时间为t(秒).

(1)请直接用含t的代数式表示当点PAB上时,BP= ;②当点PBC上时,BP=

(2)求△BPC为等腰三角形的t.

(备用图)

查看答案和解析>>

科目: 来源: 题型:

【题目】为调查市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭轿车,E:其他五个选项中选择最常用的一项将所有调查结果整理后绘制成不完整的条形统计图1)和扇形统计图(图2),请结合统计图回答下列问题:

(1)在这次调查中,一共调查了 名市民;

(2)扇形统计图中,C组的百分率是 ;并补全条形统计图;

(3)计算四市中10000名市民上班时最常用家庭轿车的有多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1 , 直线CD的表达式为y2=k2x+b2 , 则k1k2=

查看答案和解析>>

科目: 来源: 题型:

【题目】△ABC的内切圆的三个切点分别为D、E、F,∠A=75°,∠B=45°,则圆心角∠EOF=度.

查看答案和解析>>

科目: 来源: 题型:

【题目】长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上找到一点P,使PD+PE的和最小,则这个和的最小值是(   ).

A. B. C. 3 D.

查看答案和解析>>

同步练习册答案