相关习题
 0  349556  349564  349570  349574  349580  349582  349586  349592  349594  349600  349606  349610  349612  349616  349622  349624  349630  349634  349636  349640  349642  349646  349648  349650  349651  349652  349654  349655  349656  349658  349660  349664  349666  349670  349672  349676  349682  349684  349690  349694  349696  349700  349706  349712  349714  349720  349724  349726  349732  349736  349742  349750  366461 

科目: 来源: 题型:

【题目】如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.

(1)求二次函数的表达式;
(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;
(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.
温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1 , y1),Q(x2 , y2),
当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;
当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.

查看答案和解析>>

科目: 来源: 题型:

【题目】解答
(1)阅读理解:

如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC,ABC和∠ACB的平分线相交于点G,过点GEFBCABEACF过点GGDACD,下列四个结论:① EF=BE+CF②∠BGC=90°+A③点GABC各边的距离相等;④设GD=mAE+AF=n,=mn. 其中正确的结论有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.

(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)
(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;
(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE, 所围成区域的面积.(其中 表示劣弧,结果保留π和根号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知AEAB,AFAC,AE=AB,AF=AC.

(1)问线段ECBF数量关系和位置关系?并给予证明.

(2)连AM,请问∠AME的大小是多少,如能求写出过程;不能求,写出理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AD为∠BAC的平分线,DEABE,DFACF,

(1)证明AE=AF;

(2)若ABC面积是36cm2,AB=10cm,AC=8cm,求DE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y= (x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).

(1)求反比例函数的表达式;
(2)求点F的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,点 D AB的中点.

(1)如果点 P 在线段 BC 上以 1cm/s 的速度由点 B 向点 C 运动,同时,点 Q 在线段 CA 上由点 C 向点 A 运动.

若点 Q 的运动速度与点 P 的运动速度相等,经过 1 秒后,△BPD △CQP 是否全等,请说明理由;

若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD △CQP 全等?

(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边运动,则经过 后,点 P 与点 Q 第一次在△ABC 的 边上相遇?(在横线上直接写出答案,不必书写解题过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)

查看答案和解析>>

科目: 来源: 题型:

【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?

查看答案和解析>>

同步练习册答案