相关习题
 0  349652  349660  349666  349670  349676  349678  349682  349688  349690  349696  349702  349706  349708  349712  349718  349720  349726  349730  349732  349736  349738  349742  349744  349746  349747  349748  349750  349751  349752  349754  349756  349760  349762  349766  349768  349772  349778  349780  349786  349790  349792  349796  349802  349808  349810  349816  349820  349822  349828  349832  349838  349846  366461 

科目: 来源: 题型:

【题目】如图所示,在梯形ABCD中,ABDCEF是梯形的中位线,ACEFGBDEFH , 以下说法错误的是(  )
A.ABEF
B.AB+DC=2EF
C.四边形AEFB和四边形ABCD相似
D.EG=FH

查看答案和解析>>

科目: 来源: 题型:

【题目】三种不同类型的纸板的长宽如图所示,其中A类和C类是正方形,B类是长方形,现A类有1块,B类有4块,C类有5块. 如果用这些纸板拼成一个正方形,发现多出其中1块纸板,那么拼成的正方形的边长是( )

A. m+n B. 2m+2n C. 2m+n D. m+2n

查看答案和解析>>

科目: 来源: 题型:

【题目】顺次连接四边形各边中点所得的四边形是(  )
A.平行四边形
B.矩形
C.菱形
D.以上都不对

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,∠A=90°,BC∥AD,AB=6cm,点P从A出发沿射线AD运动,速度是每秒1cm,点R从点B出发沿射线BC运动,速度是每秒2cm,点Q在点P的右侧,且PQ=10cm,时间为t秒;

求:(1)△PQR的面积;

(2)当t=1秒时,求PR的长;

(3)当t为何值时,△PQR是等腰三角形?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,AB=ACAD平分∠BACDEACABE , 则SEBDSABC=(  )
A.1:2
B.1:4
C.1:3
D.2:3

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(  )
A.8
B.10
C.12
D.14

查看答案和解析>>

科目: 来源: 题型:

【题目】连接四边形不相邻两个顶点的线段叫做四边形的对角线,如图1,四边形ABCD中线段AC、线段BD就是四边形ABCD 的对角线.把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.

(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系.

猜想结论:(要求用文字语言叙述)______

写出证明过程(先画出图形,写出已知、求证).

(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC,D,E分别是边BC,AC上的点,且BD=EC,∠ADE=∠B.

(1)求证:AD=DE;

(2)若∠ADE=,求ADB的度数(用含x的代数式表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角△ABC中,∠ACB=90°,∠B=30°,CDABDCE是△ABC的角平分线.

(1)求∠DCE的度数.
(2)若∠CEF=135°,求证:EFBC.

查看答案和解析>>

科目: 来源: 题型:

【题目】湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.

(1)求温馨提示牌和垃圾箱的单价各是多少元?

(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?

查看答案和解析>>

同步练习册答案