科目: 来源: 题型:
【题目】已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.![]()
(1)发现:如图1,当E点旋转到DA的延长线上时,△ABE与△ADG的面积关系是:;
(2)引申:当正方形AEFG旋转任意一个角度时,△ABE与△ADG的面积关系是:;
(3)如图3,四边形ABMN、四边形DEAC、四边形BFGC均为正方形,则S△ABC、S△AEN、S△BMF、S△DCG的关系是;
(4)运用:某小区中有一块空地,要在其中建三个正方形健身场所(如图3),其余空地修成草坪.若已知其中一个正方形的边长为5m,另一个正方形的边长为4m,则草坪的最大面积是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈
,sin31°≈
)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】小明在银行存入一笔零花钱.已知这种储蓄的年利率为n%,若设到期后的本息和(本金+利息)为y(元),存入的时间为x(年),那么, ![]()
(1)下列哪个图象更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?
(2)根据(1)的图象,求出y与x的函数关系式(不要求写出自变量x的取值范围),并求出两年后的本息和.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校初三(1)班50名学生参加1分钟跳绳体育考试.1分钟跳绳次数与频数经统计后绘制出下面的频数分布表(60~70表示为大于等于60并且小于70)和扇形统计图.
等级 | 分数段 | 1分钟跳绳次数段 | 频数(人数) |
A | 120 | 254~300 | 0 |
110~120 | 224~254 | 3 | |
B | 100~110 | 194~224 | 9 |
90~100 | 164~194 | m | |
C | 80~90 | 148~164 | 12 |
70~80 | 132~148 | n | |
D | 60~70 | 116~132 | 2 |
0~60 | 0~116 | 0 |
(1)求m、n的值;
(2)求该班1分钟跳绳成绩在80分以上(含80分)的人数占全班人数的百分比;
(3)根据频数分布表估计该班学生1分钟跳绳的平均分大约是多少?并说明理由. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第35秒时质点所在位置的坐标是( ) ![]()
A.(4,0)
B.(0,5)
C.(5,0)
D.(5,5)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y=
(3≤x≤12)的一部分,记作G1 , 且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2 . ![]()
(1)求双曲线的解析式;
(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为;
(3)点(6,n)为G1与G2的交点坐标,求a的值.
(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<
,直接写出a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面上,Rt△ABC与直径为CE的半圆O,如图1摆放,∠B=90°,BC=m,AC=2CE=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转,且∠ECD=∠ACB,旋转角记为α(0°≤α≤180°). ![]()
(1)①当α=0°时,连接DE,则∠CDE=°,CD=;②当α=180°时,
= .
(2)试判断:旋转过程中
的大小有无变化?请仅就图2的情形给出证明.
(3)若m=4,n=5,当α=∠ACB时,线段BD= .
(4)若m=4
,n=6,当半圆O旋转至与△ABC的边相切时,线段BD= .
查看答案和解析>>
科目: 来源: 题型:
【题目】某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:
月产销量y(个) | … | 160 | 200 | 240 | 300 | … |
每个玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)每月产销量y(个)与销售单价x(元)之间的函数关系式为; 从上表可知,每个玩具的固定成本Q(元)与月产销量y(个)之间满足反比例函数关系式,求出Q与y之间的关系式;
(2)若每个玩具的固定成本为30元,求它的销售单价是多少元?
(3)若该厂这种玩具的月产销量不超过400个,求此时销售单价最低为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1B1C1 , AB与A1C1相交于点D,A1C1、BC1与AC分别交于点E、F. ![]()
(1)求证:△BCF≌△BA1D;
(2)当∠C=40°时,请你证明四边形A1BCE是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com