相关习题
 0  350119  350127  350133  350137  350143  350145  350149  350155  350157  350163  350169  350173  350175  350179  350185  350187  350193  350197  350199  350203  350205  350209  350211  350213  350214  350215  350217  350218  350219  350221  350223  350227  350229  350233  350235  350239  350245  350247  350253  350257  350259  350263  350269  350275  350277  350283  350287  350289  350295  350299  350305  350313  366461 

科目: 来源: 题型:

【题目】如图,甲、乙两人分别从A(1, ),B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向,乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.

(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;
(2)当t为何值时,△OMN∽△OBA;
(3)甲、乙两人之间的距离为MN的长,设s=MN2 , 直接写出s与t之间的函数关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】为测量某特种车辆的性能,研究制定了行驶指数P,P=K+1000,而K的大小与平均速度v(km/h)和行驶路程s(km)有关(不考虑其他因素),K由两部分的和组成,一部分与v2成正比,另一部分与sv成正比.在实验中得到了表格中的数据:

速度v

40

60

路程s

40

70

指数P

1000

1600


(1)用含v和s的式子表示P;
(2)当行驶指数为500,而行驶路程为40时,求平均速度的值;
(3)当行驶路程为180时,若行驶指数值最大,求平均速度的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC的边AB为⊙O的直径,BC与⊙O交于点D,D为BC的中点,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线;
(3)若AB=13,BC=10,求CE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=x﹣1与反比例函数y= 的图像交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).
(1)求反比例函数的解析式;
(2)若点P(n,﹣1)是反比例函数图像上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,△ABC中,AD⊥BC于D,AD=200,∠B=30°,∠C=45°.求BC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形ABCD中,AC=12,BD=8,P是AC上的一个动点,过点P作EF∥BD,与平行四边形的两条边分别交于点E、F.设CP=x,EF=y,则下列图像中,能表示y与x的函数关系的图像大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为(
A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=x2+x+c的图像与x轴的一个交点为(2,0),则它与x轴的另一个交点坐标是(
A.(1,0)
B.(﹣1,0)
C.(2,0)
D.(﹣3,0)

查看答案和解析>>

科目: 来源: 题型:

【题目】课外兴趣小组活动时,老师提出了如下问题: 如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,再连接BE,(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

(1)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF. ①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明

(2)问题拓展:如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案