相关习题
 0  350230  350238  350244  350248  350254  350256  350260  350266  350268  350274  350280  350284  350286  350290  350296  350298  350304  350308  350310  350314  350316  350320  350322  350324  350325  350326  350328  350329  350330  350332  350334  350338  350340  350344  350346  350350  350356  350358  350364  350368  350370  350374  350380  350386  350388  350394  350398  350400  350406  350410  350416  350424  366461 

科目: 来源: 题型:

【题目】已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.

(1)求m的值及抛物线E2所表示的二次函数的表达式;
(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1 , BP绕点B顺时针也旋转角α得到BP2 , 连接PP1、PP2

(1)如图1,当α=90°时,求∠P1PP2的度数;
(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;
(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2 , l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.

查看答案和解析>>

科目: 来源: 题型:

【题目】大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.
(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;
(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.

(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB=,求线段OE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题

(1)2014年益阳市的地区生产总值为多少亿元?
(2)请将条形统计图中第二产业部分补充完整;
(3)求扇形统计图中第二产业对应的扇形的圆心角度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2 , 点P2恰好在直线l上.

(1)写出点P2的坐标;
(2)求直线l所表示的一次函数的表达式;
(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3 . 请判断点P3是否在直线l上,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).

(1)求该二次函数的表达式;
(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;
(3)在(2)的条件下,请解答下列问题:
①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;
②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.

(1)求证:△AEH≌△CGF
(2)求证:四边形EFGH是菱形.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下列材料,并解决相关的问题.
按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1 , 依此类推,排在第n位的数称为第n项,记为an
一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.
(1)等比数列3,6,12,…的公比q为 ,第4项是
(2)如果一个数列a1 , a2 , a3 , a4 , …是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.
所以:a2=a1q,a3=a2q=(a1q)q=a1q2 , a4=a3q=(a1q2)q=a1q3 , …
由此可得:an=(用a1和q的代数式表示).
(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.

(1)求点B到AC的距离.
(2)求线段CD的长度.

查看答案和解析>>

同步练习册答案