科目: 来源: 题型:
【题目】如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作第三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1 , 按上述方法所作的正方形的边长依次为a2 , a3 , a4 , …,an , 则an= . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB. ![]()
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.![]()
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)是否存在某一时刻,使△PCQ的面积等于△ABC面积的一半,并说明理由.
(3)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积达到最大值,并说明利理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】有一座抛物线形拱桥,校下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米. ![]()
(1)在如图的坐标系中,求抛物线的表达式;
(2)若洪水到来是水位以0.2米/时的速度上升,从正常水位开始,再过几小时能到达桥面?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线y=﹣
x+1和抛物线y=x2+bx+c都经过点A(2,0)和点B(k,
) ![]()
(1)k的值是;
(2)求抛物线的解析式;
(3)不等式x2+bx+c>﹣
x+1的解集是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角的度数是 ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,且过点A (3,0),二次函数图象的对称轴是x=1.下列结论:①b2>4ac;②ac>0; ③a﹣b+c>0; ④4a+2b+c<0.其中错误的结论有( ) ![]()
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.![]()
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.![]()
(1)求证:AN=MB;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其它条件不变,在图②中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com