相关习题
 0  350287  350295  350301  350305  350311  350313  350317  350323  350325  350331  350337  350341  350343  350347  350353  350355  350361  350365  350367  350371  350373  350377  350379  350381  350382  350383  350385  350386  350387  350389  350391  350395  350397  350401  350403  350407  350413  350415  350421  350425  350427  350431  350437  350443  350445  350451  350455  350457  350463  350467  350473  350481  366461 

科目: 来源: 题型:

【题目】如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作第三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1 , 按上述方法所作的正方形的边长依次为a2 , a3 , a4 , …,an , 则an=

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.

(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)是否存在某一时刻,使△PCQ的面积等于△ABC面积的一半,并说明理由.
(3)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积达到最大值,并说明利理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】有一座抛物线形拱桥,校下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.

(1)在如图的坐标系中,求抛物线的表达式;
(2)若洪水到来是水位以0.2米/时的速度上升,从正常水位开始,再过几小时能到达桥面?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=﹣ x+1和抛物线y=x2+bx+c都经过点A(2,0)和点B(k,

(1)k的值是
(2)求抛物线的解析式;
(3)不等式x2+bx+c>﹣ x+1的解集是

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程:
(1)x2+4x+2=0(配方法)
(2)5x2+5x=﹣1﹣x(公式法)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角的度数是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,且过点A (3,0),二次函数图象的对称轴是x=1.下列结论:①b2>4ac;②ac>0; ③a﹣b+c>0; ④4a+2b+c<0.其中错误的结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.

(1)求证:AN=MB;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其它条件不变,在图②中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.

查看答案和解析>>

同步练习册答案