相关习题
 0  350313  350321  350327  350331  350337  350339  350343  350349  350351  350357  350363  350367  350369  350373  350379  350381  350387  350391  350393  350397  350399  350403  350405  350407  350408  350409  350411  350412  350413  350415  350417  350421  350423  350427  350429  350433  350439  350441  350447  350451  350453  350457  350463  350469  350471  350477  350481  350483  350489  350493  350499  350507  366461 

科目: 来源: 题型:

【题目】模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图 ①,他时常想,怎么走才能使每天的路程之和最短呢?
大数学家海伦曾用轴对称的方法巧妙的解决了这问题

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.
请你在下列的阅读、应用的过程中,完成解答.
(1)理由:如图③,在直线L上另取任一点C′,连接AC′,BC′,B′C′,
∵直线l是点B,B′的对称轴,点C,C′在l上
∴CB= , C′B=
∴AC+CB=AC+CB′=
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
归纳小结:
本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).
本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.
(2)模型应用
如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.
求EF+FB的最小值
分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC于F,则EF+FB的最小值就是线段的长度,EF+FB的最小值是

如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是 的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是
如图⑥,一次函数y=﹣2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD的最小值,并写出取得最小值时P点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司销售A,B两种产品,根据市场调研,确定两条信息:
信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:
信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.
根据以上信息,解答下列问题;

(1)求二次函数解析式;
(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.

(1)求证:AE=CE;
(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】用如图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,游戏者同时转动两个转盘,配成紫色的概率是多少?请用树状图或列表说明理由(蓝色和红色能配成紫色).

查看答案和解析>>

科目: 来源: 题型:

【题目】计算下面各题
(1)计算:
(2)关于x一元二次方程3x2+2x﹣k=0没有实数根,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,图①是一块边长为1,周长记为P1的等边三角形纸板,沿图①的底边剪去一块边长为 的等边三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉的等边三角形纸板边长的 )后得到图 ③,④…,记第n块剪掉的等边三角形纸板的周长为Pn , 则Pn=

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠C=45°,AB的垂直平分线交AB于点E,交BC于点D;AC的垂直平分线交AC于点G,交BC与点F,连接AD、AF,若AC=3 ,BC=9,则DF等于(

A.
B.
C.4
D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+ 与直线AB交于点A(﹣1,0),B(4, ),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.

(1)求抛物线的表达式;
(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:
①分别以A,C为圆心,a为半径(a> AC)作弧,两弧分别交于M,N两点;
②过M,N两点作直线MN交AB于点D,交AC于点E;
③将△ADE绕点E顺时针旋转180°,设点D的像为点F.

(1)请在图中直线标出点F并连接CF;
(2)求证:四边形BCFD是平行四边形;
(3)当∠B为多少度时,四边形BCFD是菱形.

查看答案和解析>>

科目: 来源: 题型:

【题目】学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:

(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;
(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;
(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.

查看答案和解析>>

同步练习册答案