【题目】已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:
①分别以A,C为圆心,a为半径(a> AC)作弧,两弧分别交于M,N两点;
②过M,N两点作直线MN交AB于点D,交AC于点E;
③将△ADE绕点E顺时针旋转180°,设点D的像为点F.
(1)请在图中直线标出点F并连接CF;
(2)求证:四边形BCFD是平行四边形;
(3)当∠B为多少度时,四边形BCFD是菱形.
【答案】
(1)解:如图所示:
(2)解:∵根据作图可知:MN垂直平分线段AC,
∴D、E为线段AB和AC的中点,
∴DE是△ABC的中位线,
∴DE= BC,
∵将△ADE绕点E顺时针旋转180°,点D的像为点F,
∴EF=ED,
∴DF=BC,
∵DE∥BC,
∴四边形BCFD是平行四边形
(3)解:当∠B=60°时,四边形BCFD是菱形;
∵∠B=60°,
∴BC= AB,
∵DB= AB,
∴DB=CB,
∵四边形BCFD是平行四边形,
∴四边形BCFD是菱形
【解析】(1)根据题意作出图形即可;(2)首先根据作图得到MN是AC的垂直平分线,然后得到DE等于BC的一半,从而得到DE=EF,即DF=BC,然后利用一组对边平行且相等的四边形是平行四边形进行判定即可;(3)得到BD=CB后利用邻边相等的平行四边形是菱形进行判定即可.
【考点精析】通过灵活运用平行四边形的判定和菱形的判定方法,掌握两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG= cm,则EF的长为( )
A.2cm
B. cm
C.1cm
D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.
(1)求证:△BDE∽∠ADB;
(2)试判断直线DF与⊙O的位置关系,并说明理由;
(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程mx2﹣(m+3)x+3=0(m≠0).
(1)求证:方程总有两个实数根;
(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用如图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,游戏者同时转动两个转盘,配成紫色的概率是多少?请用树状图或列表说明理由(蓝色和红色能配成紫色).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BD为AC边的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AB=12,BC=5,则四边形BDFG的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1 , x2 ,
① 若x1<x2 , 都有f(x1)<f(x2),则称f(x)是增函数;
②若x1<x2 , 都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)= (x>0)是减函数.
证明:假设x1<x2 , 且x1>0,x2>0
f(x1)﹣f(x2)= ﹣ = =
∵x1<x2 , 且x1>0,x2>0
∴x2﹣x1>0,x1x2>0
∴ >0,即f(x1)﹣f(x2)>0
∴f(x1)>f(x2)
∴函数f(x)= (x>0)是减函数.
根据以上材料,解答下面的问题:
(1)函数f(x)= (x>0),f(1)= =1,f(2)= = .
计算:f(3)= , f(4)= , 猜想f(x)= (x>0)是函数(填“增”或“减”);
(2)请仿照材料中的例题证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A,B,C,D,E,F分别是⊙O上的六等分点,⊙O的半径是100,在这六点间修建互通的道路(即图中实线部分为道路),现有如下两种方案.方案一:如图1,各条线段长度均相等,记图中道路长为l1;方案二:如图2,AQ=BG=CH=DM=EN=FP,点G,H,M,N,P,Q分别是线段AQ,BG,CH,DM,EN,FP的中点,六边形GHMNPQ是以O为中心的正六边形,记图中道路长为l2;则l1= ;l2= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com